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Abstract

Management planes for data-center systems are com-
plicated to develop, test, maintain, and evolve. They
routinely grapple with hard combinatorial optimiza-
tion problems like load balancing, placement, schedul-
ing, rolling upgrades and configuration management. To
tackle these problems, developers are left with two bad
choices: (i) develop ad-hoc mechanisms for systems to
solve these optimization problems, or (ii) use specialized
solvers that require steep engineering effort.

We propose Weave, a tool that enables programmers
to specify cluster management policies in a high-level
declarative language, and compute policy-compliant con-
figurations automatically and efficiently. Weave allows
constraints and policies, the essence of a management
plane, to be easily added, removed and modified over
time, using a language familiar to developers (SQL).
In this paper, we discuss our approach of management
plane synthesis, its benefits, and present preliminary
results from implementing a Kubernetes scheduler and
a CorfuDB management plane using Weave.
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1 Introduction

Production-grade distributed systems execute a diverse
range of management tasks, such as host lifecycle man-
agement, cluster resizing, failure recovery, load balanc-
ing, membership management, placement, and rolling
upgrades. These tasks fall under the purview of a man-

agement plane (MP) that continuously tracks the state
of the cluster and triggers management tasks in response
to state changes.

At a high level, cluster management is guided by a set
of policies that represent both hard constraints ("ensure
a VM requesting a GPU is always placed on a host with
a GPU") and soft constraints ("scatter replicas across
as many data-centers as possible"). Given a policy, the
MP must find an optimal cluster configuration satisfying
all hard constraints while minimizing violations of soft
constraints.

MP developers usually tackle the configuration prob-
lem by designing custom application-specific algorithms—
an approach that often leads to a software engineering

deadend. As new types of constraints are introduced, the
developers get overwhelmed by having to solve arbitrary
combinations of increasingly complex constraints. This
is not surprising given that, beyond the simplest cases,
cluster management policies amount to NP-hard combi-

natorial optimization problems that cannot be efficiently
solved via naive search. In addition to the algorithmic
complexity, the lack of separation between the applica-
tion, the policy, and the constraint solving algorithm
leads to unmaintainable code.

As a result, cluster management systems simply disal-
low many useful types of policies, requiring the end user
to manually translate their high-level requirements into
low-level configuration decisions.
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A promising approach to overcoming these issues is
using specialized tools, such as constraint solvers, inte-
ger linear programming (ILP) toolkits, and SMT solvers.
These tools incorporate decades of progress on com-
putational learning, constraint propagation, symmetry
breaking, local search and many other techniques to
solve real-world combinatorial optimization problems
efficiently. Subsequently, researchers have used them to
tackle instances of cluster management problems like
scheduling [11, 16], server provisioning [8], traffic engi-
neering [12] and configuration management [15]. They
are thus applicable to a wide range of problems, elimi-
nating the need for ad hoc algorithms. In addition, the
solver-based approach enforces clean separation of con-
cerns between MP components by interposing a layer of
abstraction between the system and the solver: the de-
veloper expresses system configuration and policy using
the solver’s modeling language, without having to worry
about the details of the search algorithm.

Why is this principled approach hardly ever used in

production systems? The answer is two-fold. First, in-
tegrating optimization tools in a production system re-
quires a steep engineering effort: one must map application-
level constraints into an appropriate mathematical for-
malism, encode these constraints in the modeling lan-
guage of the solver, translate cluster state into model
input variables and translate solver output back to a
new cluster configuration, generate failure explanations
whenever the solver is unable to find a solution, etc.
These tasks require specialized skills that system de-
velopers do not possess. For instance, coming up with
an efficient encoding of a problem requires an in-depth
understanding of solver internals.

Second, management planes typically evolve from sim-
ple designs, initially only supporting few constraints that
can be readily solved using hand-crafted algorithms. At
this stage, the complexity of integrating a solver into
the system is hard to justify. By the time the developers
hit a brick wall, where adding new features in an ad hoc
manner becomes infeasible, the system has accumulated
too much technical debt, with constraint solving logic
being deeply intertwined with all parts of the system. At
this point, integrating a solver in the system requires its
major overhaul, which rarely happens in practice (see
Section 2 for an example).

We present Weave, a tool that eliminates the barrier
to solver-based MP programming by synthesizing opti-
mization code automatically. We exploit the fact that in
modern distributed systems the information required to
formulate and solve the configuration problem is readily
available in the cluster state database. This database
maintains an up-to-date view of cluster configuration,
including its physical inventory, workload, user prefer-
ences, etc. Instead of requiring the developer to build

a separate system model for use by the solver, Weave
extracts this model from the database schema.

Weave programmers express hard and soft constraints
(or the policy) as a collection of views over the state
database. Thus, they do not need to learn the low-level
language of the solver, and instead work with familiar
SQL.

Given the state database schema extended with views,
Weave generates an efficient encoding of the configu-
ration problem in the constraint solver’s language. It
uses the high-level information extracted from SQL to
generate optimized encodings that would be hard for
non-expert users to hand-craft.

At runtime, Weave automates the communication be-
tween the MP and the solver by extracting current cluster
configuration from the state database and converting
it into an input to the solver. It parses the solution
computed by the solver and outputs the requisite mod-
ifications (deltas) to be made to the database state to
satisfy all the policies. A controller, written by the devel-
oper, observes these deltas and issues lower-level control
plane commands to the underlying system.

2 Motivating example

We use the Kubernetes scheduler [1] to illustrate the lim-
itations of the ad-hoc approach to cluster management.
However, the challenges associated with the ad-hoc ap-
proach are general and recur across different MPs, not
just Kubernetes.

The scheduler is responsible for assigning collections
of containers, called pods, to cluster nodes. In the current
implementation it works as follows: For each pending pod
placement request, the scheduler first iterates through
each node in the system, and filters out the set of valid
nodes using a list of predicates (analogous to hard con-
straints). The scheduler ranks all the valid nodes using
some priority functions (analogous to soft constraints).
The pod is finally placed on the highest ranked node.

This design is simple, flexible (allowing developers
to contribute new predicates and priority functions),
and efficient. Unfortunately, it also proved fundamen-
tally limited when it comes to expressing more complex
constraints due to three main challenges:

Dependencies among constraints (C1) Some time after
the basic scheduling algorithm was implemented, Kuber-
netes introduced a new eviction policy: if the scheduler
cannot place a pod, it checks whether it can preempt ex-
isting lower priority pods. This policy interacts with the
basic node placement policy: the preemption code verifies
whether affinity/anti-affinity predicates for the original
pod were in use, and if they will be violated if that lower
priority pod is evicted (causing those predicates to be
re-executed).

46



Synthesizing Cluster Management Code for Distributed Systems HotOS ’19, May 13–15, 2019, Bertinoro, Italy

As new, more complex predicates are added, the pre-
emption code needs to remain in sync with the rest of
the scheduler, making it challenging to evolve the code
over time. The complexity accumulates making entire
classes of policies difficult to implement in the sched-
uler. For example, cross-node preemption, where a pod
on one node is preempted to allow a new pod to be
placed on another node (because of affinity/anti-affinity
requirements) is currently not possible [13].

Global constraints (C2) Consider Kubernetes’ service

affinity predicate. The predicate ensures that all pods
from the same service (e.g., a fleet of load balancers) are
assigned to nodes that have identical values for some
configured labels (e.g., an availability zone label). This
constraint holds over groups of pods and nodes, but
it is hard to implement this in the current scheduler
architecture that can only reason about placing pods,
one at a time. Therefore, the scheduler, when placing
each pod from a group, has to scan some data-structures
to make sure its next decision will be consistent with past
decisions for pods from the same service. The scheduler
therefore contains additional code to pre-compute some
of these results to avoid the inefficient scans.

Not surprisingly, the code is commented with a large
warning that indicates that the predicate is not guaran-
teed to work without the precomputed metadata, and
there is a discussion to ax the feature because of the
accumulating technical debt [14].

Coupling between policies and state (C3) Finally, all
the scheduler code is tightly coupled with the data-
structures that hold the cluster state. For example, it is
not possible to re-use the code for defining constraints
and solving them in Kubernetes to be used in a different
system. This is inherent in not just the interfaces to
add new predicates and priorities, but also in all the
associated code of the scheduler around preemption.

Specialized solvers While notoriously hard to use for
the reasons stated in §1, specialized solvers overcome
the above challenges. Solvers support input specification
languages that capture complex constraints in a modular
way, even though internally, the constraints may interact
in complex ways during the search for a solution. There-
fore, developers can easily add and modify constraints
(C1).

The tools are capable of efficiently solving complex
aggregate and global constraints (C2) using techniques
like bounds propagation and learning. Lastly, these tools
implement general-purpose algorithms, applicable to a
wide range of optimization problems, eliminating the
need to hand-craft new algorithms for each distributed
system (C3). The combinatorial optimization problems

that recur across MPs are therefore best left to special-
ized solvers.

3 Design

Weave enables programmers to specify cluster manage-
ment policies in a high-level declarative language, and
compute policy-compliant configurations automatically
and efficiently. To achieve this, we have to address two
design challenges. First, we need a specification language
that is sufficiently expressive, yet easy to use. We chose
SQL for three reasons. First, relational databases are
already widely used to store system configuration in ex-
isting cluster management software. Second, unlike most
formal specification languages, SQL is familiar to most
developers. Indeed, its power has been harnessed in a
wide-range of data-centric systems [2, 4, 7]. Finally, as
we discuss in this and the following section, SQL allows
expressing complex MP policies in a clear and concise
fashion.

The second challenge is to bridge the gap between the
SQL representation of the problem and formal modeling
languages used by optimization tools. To this end, we
implemented a compiler that synthesizes the necessary
inputs to the solver from the SQL schema, and a runtime
engine that feeds the current state of the cluster stored in
the state database to the solver and reflects the solution
returned by the solver back in the database.

As a result, Weave users do not have to learn a new
language, and, more importantly, do not have to master
the subtle art of writing efficient optimization models.
In the coming sections, we discuss each component in
more detail.

3.1 Configuration database

At development time, the programmer specifies an SQL
schema that represents the cluster’s state, annotating
some of its columns as decision variables, i.e., variables
to be assigned automatically by Weave. For example, a
placement decision of a pod on a node in Kubernetes
can be represented by the following:

create table pod_info

(

pod_name varchar(100) not null primary key,

....

variable__node_name varchar(36) not null,

);

Here, the variable__ prefix indicates that the vari-
able__node_name column should be treated as decision
variables. Other columns become input variables, whose
values are supplied by the database.
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3.2 Policies

The next step is to specify constraints over decision
variables.

Hard constraints Hard constraints are specified as SQL
views with the prefix constraint_. For example, con-
sider the following constraint for Kubernetes:

create view constraint_node_predicates as

select * from pod_info

join node_info

on pod_info.variable__node_name = node_info.name

where not(pod_info.status = 'Pending') or

(node_info.unschedulable = false and

node_info.memory_pressure = false and

node_info.disk_pressure = false and

node_info.pid_pressure = false and

node_info.network_unavailable = false and

node_info.ready = true);

Here, Weave must ensure that for all records returned
by joining the pod_info and node_info tables, the pred-
icate in the where clause holds true. This constraint
therefore ensures that pods that are pending placement
are never assigned to nodes that have been marked un-
schedulable by the operator, are under resource pressure,
or are not ready to accept new pod requests.

Soft constraints Like hard constraints, soft constraints
are also specified as SQL views. However, soft constraint
views need to be scalar expressions that return a sin-
gle value. Weave ensures that the computed solution
maximizes the sum of every specified soft constraint. All
views with the prefix objective_ are treated as soft
constraints.

As an example, consider a simple load balancing policy
to balance the CPU utilization of nodes in a cluster. To
do so, we first write a convenience view (demand_per_-
node) that computes the spare CPU capacity per node.
We then describe a soft constraint view (objective_-
load_balance_cpu) to compute the minimum spare ca-
pacity in the cluster. By simply declaring such a view,
Weave computes solutions that maximize the minimum
CPU utilization of nodes in the cluster.

create view demand_per_node as

select (node_info.cpu_capacity

- sum(pod_info.cpu_request)) as cpu_spare

from node_info

join pod_info

on pod_info.variable__node_name = node_info.name

where status = 'Pending'

group by node_info.name;

create view objective_least_requested_cpu as

select min(cpu_util) from demand_per_node;

3.3 Synthesizing optimization models

An optimization model expresses the optimization prob-
lem using the mathematical formalism supported by
a specific solver, e.g., a set of linear inequalities (for
an ILP solver), predicates in first-order logic (for an
SMT solver), or a constraint modeling language (for a
constraint solver).

By representing constraints in SQL, Weave is able to
support multiple backend languages, allowing system
builders to easily try different types of solvers. Currently,
we support MiniZinc (which in turn supports a variety
of solvers) and are also implementing a backend for
Google’s OR-tools.

Furthermore, our design enables different optimiza-
tions at various stages of the synthesis process. For exam-
ple, we use backend-specific optimizations during code
generation like rewriting expressions to use global con-

straints. Global constraints are constraints over groups

of variables for which solvers implement specialized and
efficient propagator algorithms that can dramatically
reduce the search space of the problem. For example,
when generating MiniZinc code, we rewrite usages of the
IN operator in SQL and its arguments to instead use a
suite of membership global constraints for which solvers
typically implement fast propagators. Weave also allows
developers to directly use global constraints in SQL pred-
icates. For instance, a common global constraint we use
is the all_different constraint, which enforces that
a set of variables all take different values (which we
use when we need to place replicas in different failure
domains, for example).

3.4 Runtime

At runtime, Weave is responsible for communication be-
tween the solver and the cluster state database (Figure 1).
At startup, the solver is initialized with the optimization
model synthesized at the previous step. Weave populates
the model by extracting the values for the input vari-
ables from the database. Whenever the state database
changes (Step 1 in the Figure), e.g., a new pod is added
to the system, Weave invokes the solver to compute a
configuration update (Step 2), e.g., assigning the new
pod to a suitable host while satisfying affinity constraints
and optimally balancing load across hosts. Weave con-
verts the solution returned by the solver into a database
update (Steps 3 and 4). The final step is to apply the
new configuration to the system, which is done by the
distributed system controller and is not part of Weave.

3.5 Debugging

A common theme in debugging MPs is to understand why
the MP could not identify a valid solution (e.g., a pod
placement decision) in the face of a web of constraints.

48



Synthesizing Cluster Management Code for Distributed Systems HotOS ’19, May 13–15, 2019, Bertinoro, Italy

Weave runtime
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Figure 1. Weave runtime.

Weave improves debuggability by taking advantage of a
common solver capability: that of identifying unsatisfi-

able cores. An unsatisfiable core is a minimal subset of
model constraints and inputs that suffices to make the
overall problem unsatisfiable (for example, a core might
involve a single input variable that cannot simultane-
ously satisfy two contradicting constraints in the model).
We leverage this capability by providing a translation
layer that extracts an unsatisfiable core from the solver,
and identifies corresponding SQL constraints and records
in the tables that lead to a contradiction. We found this
feature invaluable when debugging placement scenarios
involving complex affinity constraints.

4 Evaluation

Our implementation of Weave is about 2K LoC in Java
for the library and an additional 1.5K LoC for tests.
We first discuss our implementation of a Kubernetes
scheduler using Weave. Our scheduler works as a drop-in
replacement for the current Kubernetes scheduler (writ-
ten in Go). We evaluate both qualitative and quantitative
gains in using Weave to implement the policies in the
scheduler.

The Kubernetes scheduler has 20 configurable ‘pred-
icates’, which behave as hard constraints, and 11 con-
figurable ‘priorities’, which are equivalent to soft con-
straints. We implemented 15 of 20 predicates, where the
predicates we skipped were those that were specific to
GCE, AWS and Azure. For priorities, we implemented 4
out of 11. We are still working on implementing other
constraints, but have no reason to believe that they are
any more complicated. In general, we found ourselves
spending more time studying the existing Kubernetes
code and understanding the intent behind their policies
than we did writing the equivalent code in Weave using
SQL.

We were able to implement each of the constraints we
considered using < 10 lines of SQL. We count every SQL
clause (select, from, where etc.) and every predicate sep-
arated by and/or as a new line. For example, the service

affinity policy, discussed in §2-C2, which is challenging
to get right in Kubernetes, was implemented in only 6
lines of SQL. It merely involves joining one view (which
itself is an additional 6 lines) and a table, and posting a
constraint using a having clause. As another example, a
commonly used soft constraint in Kubernetes is the least

requested policy, which load balances based on CPU and
memory utilization. This policy was implemented in 4
lines of SQL – we simply ask Weave to maximize the
minimum sum of the CPU and memory utilization per
node.

The number of joins is a commonly reported com-
plexity metric for SQL. Except for one constraint that
involved two joins, all hard and soft constraints were
expressible using zero or one joins each.

In contrast, the existing Kubernetes scheduler consists
of 10s of thousands of lines of Go code that is deeply
intertwined with the rest of the system, and is challenging
to maintain and evolve.

The resulting scheduler has a performance that is
competitive with the Kubernetes scheduler. We attempt
to place 400 pods on a 50 node Kubernetes cluster. The
baseline Kubernetes scheduler takes roughly 80 seconds
to place all pods. Weave on the other hand takes 35s
to find an optimal solution and outputs a near-optimal
solution in only 15s.

We also implemented a management plane from scratch
for CorfuDB [3], a distributed transactional database.
As with Kubernetes, we found it easy to add complex
features like rack-aware load balancing and flexibly par-
titioning responsibilities among nodes in the cluster to
be straightforward using SQL, all of which used fewer
than 10 LoC in SQL.

5 Conclusions

Large distributed system management planes are hard to
develop and evolve over time [5, 6, 9, 10]. We therefore
believe that there are ample untapped opportunities for
using automated tools in the development process. With
Weave, we target the hard combinatorial optimization
problems that management planes routinely encounter.
By synthesizing the required optimization code from a
high-level specification written in SQL, Weave allows
developers to easily integrate specialized solvers in their
MPs, that otherwise involve steep engineering efforts
to use. Our preliminary results are promising: we were
able to use Weave to power two distributed systems,
Kubernetes and CorfuDB.
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