
Cloud-Scale
Runtime Verification of Serverless Applications

Kalev Alpernas∗
Tel Aviv University
kalev.alp@gmail.com

Aurojit Panda
NYU

Leonid Ryzhyk
VMware Research

Mooly Sagiv∗
Tel Aviv University

Abstract
Serverless platforms aim to simplify the deployment, scaling,
and management of cloud applications. Serverless applica-
tions are inherently distributed, and are executed using short-
lived ephemeral processes. The use of short-lived ephemeral
processes simplifies application scaling andmanagement, but
alsomeans that existing approaches tomonitoring distributed
systems and detecting bugs cannot be applied to serverless ap-
plications. In this paperweproposeWatchtower, a framework
that enables runtime monitoring of serverless applications.
Watchtower takes program properties as inputs, and can
detect cases where applications violate these properties. We
designWatchtower to minimize application changes, and to
scale at the same rate as theapplication.Weachieve the former
by instrumenting libraries rather than application code, and
the latter by structuringWatchtower as a serverless applica-
tion. Once a bug is found, developers can use theWatchtower
debugger to identify and address the root cause of the bug.
ACMReference Format:
Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, and Mooly Sagiv.
2021. Cloud-Scale Runtime Verification of Serverless Applications.
In ACM Symposium on Cloud Computing (SoCC ’21), November
1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3472883.3486977

1 Introduction
Serverless, or Functions-as-a-Service (FaaS) is a recent
architecture for building elastically scalable applications that
can be deployed on the cloud. This architecture is nowwidely
supported, and serverless applications can be deployed on
∗Work done partially while at VMware Research.

Permission tomakedigitalorhardcopiesofpartorall of thiswork forpersonal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this workmust be honored. For all other uses, contact the owner/author(s).
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486977

most public clouds [23, 51, 72], on shared edge infrastruc-
ture [37, 43], and in private datacenters [14]. The serverless
architecture provides elastic scaling by allocating application
resources in response to requests, which in turn ensures that
resources allocated to an application are proportional to the
number of requests being processed. Ensuring that resource
consumption is proportional to workload is particularly
important for applications where demand varies widely over
time, e.g., web applications that need to deal with diurnal
pattern [82, 87, 94]. There is evidence that deployed serverless
applications experience a similar variance; a recent study
fromMicrosoft Azure [90] observed that request rates in ap-
plications can vary by up to 8 orders of magnitude. The use of
the serverless architecture thus reduces deployment costs for
such applications without impacting performance or utility.
Serverless platforms achieve their scalability by using

ephemeral processes to run application code. Serverless appli-
cations are split into functionswhich are triggered by external
events and run in ephemeral processes that can execute for a
finite amount of time, generally ranging from severalmillisec-
onds [37] to an hour or more [73]. A single application might
have several concurrent processes executing at a time.Theuse
of ephemeral executors has significant impact onhowapplica-
tions are designed: first, the presence of concurrent processes
means that all applications are inherently distributed; second,
ephemeral processes mean that applications rely on cloud
provider services (e.g.,S3andDynamoDB) to store application
state; and third, the number of processes varies over time and
application logic cannotmake assumptions about the number
of processes running at a time, nor about their placement. We
discuss these implications in greater detail in §2.1, but note
here that all serverless applications are distributed systems
comprised of functions with differing functionality.

Ensuringcorrectness (§2.2) fordistributedapplications, and
even detecting buggy behavior is challenging. This is because
correctness properties can require reasoning about the be-
havior of several isolated processes. Several research projects
including D3S [67], Pip [84], X-Trace [46], and DInv [53] have
proposed techniques for reasoning about the correctness of
deployed distributed systems. Many of these techniques have

https://doi.org/10.1145/3472883.3486977
https://doi.org/10.1145/3472883.3486977

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

been adopted in practice [81] and incorporated in tools such
asDapper [92] andZipkin [96]. Unfortunately, applying these
existing tools and techniques to the serverless context is chal-
lenging. This is because existing techniques either rely on vec-
tor clocks inmessages to construct a causally consistent log of
the application’s runtime, or rely on consistent snapshot algo-
rithms such as Chandy-Lamport [34]. As we describe later in
§2.3, using vector clocks in serverless applications is challeng-
ing due to the pervasive use of cloud-provider services and
also poses a scalability challenge due to the use of ephemeral
executors. On the other hand, computing a consistent snap-
shot is also challenging because application code is unaware
of the set of concurrent executors running at any point in time
and executors cannot directly communicate with each other.

In this paperwedevelopWatchtower, a runtime verification
tool that canbeused to identify bugs in serverless applications.

Watchtower accepts as input one or more safety properties
(§2.2), and then monitors and analyzes the application at
runtime to detect violations. Similar to Pip and others,Watch-
tower analyzes application logs in order to detect property
violations. This requires that applications be instrumented
to produce logs. However, adding instrumentation can be a
hindrance to adoption.We observe that most serverless appli-
cations use external cloud provider services to store program
state, and access these services through a SDK that serves
as a narrow waist for these applications: the 2020 Serverless
Community Survey [38] found that 49.91% of respondents use
AWS DynamoDB and 14.8% use AWS Aurora for application
state. Both services are accessed through the AWS SDK.We
make use of this insight by providing a mechanism (§3.3) that
allows us to instrument SDK calls without requiring changes
to the SDK library. This instrumentation can be reused across
applications, reducing the instrumentation burden and facil-
itating easier adoption. Our current implementation includes
instrumentation for the AWS SDK, as well as several other
popular SDKs. Applications using these SDKs do not need to
be manually instrumented. Application developers can also
add additional application-specific logging. In our evaluation
(§6) we did not need to add any application-specific logging.

Next, given a set of logs, Watchtower needs to reconstruct
a single causally ordered log. Our approach for recovering
causal ordering between application events during moni-
toring uses synchronizedwall-clock time rather than logical
clocks. While wall-clock time is insufficient for ordering
events in most distributed systems, we show that it is suffi-
cient for serverless applications. This is because processes
(functions) in a serverless application communicate through
the use of storage or queuing services which introduce
several milliseconds of latency for message delivery, and
NTP synchronization provides sufficient synchronization
accuracy at these time scales. In our evaluation (§6) we
encountered no scenario where events could not be ordered

using wall-clock time. Nevertheless, in case two events do
occur in such close temporal proximity that they cannot be
ordered using wall-clock time, Watchtower can overcome
this issue by considering all possible interleavings between
such events. We discuss this in greater detail in §3.5.
Finally, Watchtower analyzes the causally-ordered log to

check for property violations. Scaling property checking is
one of the key challenges faced by systems likeWatchtower,
which are designed to work with serverless applications. Our
approach to doing so is to build monitoring as a serverless
application, thus allowing Watchtower to inherit the same
scaling behavior as the application which uses it. We
evaluate this approach in §7 using 6 open-source serverless
applications, a variety of correctness properties and request
rates. Our evaluation demonstrates that Watchtower can
correctly identify instances where programmer-specified
properties are violated and can scale to match application
loadwith no degradation of performance as scale increases to
rates of 1000 requests per second1.
While identifying violations is useful, addressing them

requires programmers to identify a root-cause. Watchtower
aids with this process by providing a replay-debugger (§4).
Print and log-based debugging is the main tool available to
serverless developers today, and thusWatchtower’s debugger
is useful independent of its property checking capabilities.

2 Background
We begin by providing some background that explains the
serverless computing model, the type of program properties
we consider, and challenges with using existing techniques
for monitoring distributed systems in the serverless context.

2.1 Serverless computing

First, we provide a brief background about where serverless
has been used, and present some of the limits and features of
this architecture. Serverless was originally designed as a way
to build event-driven applications for deployment on cloud
environments, and since then has been used for a variety
of uses including group chat and mail services [4], trading
platforms [9], e-commerce [2], and blogging services [6, 8].
Additionally, several recent academic efforts have shown how
to use serverless in application domains including numeric
computing (PyWren [62], NumpyWren [91], etc.), distributed
builds (gg [47]), and video recompression (ExCamera [48]).
Many of these uses, e.g., PyWren andNumpyWren, go beyond
the event-driven applications that serverless originally
targeted. This is due to the advantages offered by the server-
less architecture, which enables automatic demand-driven
resource provisioning and fine-grained pay-as-you-go billing,
thus greatly simplifying the task of deploying an application.
1Our experiments were restricted by the AWS Lambda global limit of 1000
concurrent function invocations.

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Most of the benefits of the serverless architecture result
from its adoption of an executionmodel based on ephemeral
processes. In this execution model application logic is
implemented as several independent functions, and executed
in several short-lived containers. Functions are triggered by
events includingweb requests, file systemwrites, and changes
to a database, and each function once triggered executes for a
bounded amount of time ranging froma fewmilliseconds [37]
to a fewhours [73],withAWSLambda providing an execution
bound of 15 minutes. Additionally, applications cannot make
assumptions about placement, i.e., an application’s correct-
ness cannot depend on assumptions aboutwhere a function
is executed.2 The use of ephemeral processes imposes several
additional constraints on how serverless applications are
written. First, the absence of long lived processes means that
applicationsmust rely on external services such as blob stores
(AWS S3 [22] or Azure Blob Storage [71]), or databases (AWS
DynamoDB [21], AWS Aurora [20], or GCP Cloud Span-
ner [52]) for stable storage, on services such as API gateways
(AWS API Gateway [19], or Azure API Management [70])
to implement user accessible endpoints, etc. As a result,
the use of cloud provider services is pervasive in serverless
applications. Second, the degree of concurrency in these
applications is proportional to the workload. This impacts
both how applications are written, and the complexity of rea-
soning about their correctness. In terms of how applications
are written, application logic is normally unaware of the
degree of concurrency, or their network address and thus all
communication between functions in a serverless application
is performed by reading andwriting from stable storage.3 As
we explain next the varying degree of concurrency alsomakes
it harder tomonitor and reason about application correctness.

2.2 Program properties

In this paper we consider the problem of detecting safety
property violations in serverless applications. In particular
we focus on properties whose violation can be observed in a
causal trace of the application’s execution. We consider both
properties encapsulating correctness requirements for the
application, and legal requirements for deployment. To make
this more concrete, below we list three example properties:
(1) A simple serverless mailing list application (similar to

Moonmail [4]) consisting of three functions: one that
subscribes users to a list, a second that unsubscribes
users from a list, and a third that sends e-mails to all

2Many implementation, including ones from Amazon, Azure and Google
reuse containers across functions, and some applications use temporary stor-
age in reused containers to improve performance. However, for correctness
these applications must also handle the case where a container is not reused.
3There are a few notable exceptions such as gg [47] where application logic
is responsible for triggering all concurrent functions and hence can make
assumptions about the degree of concurrency and use NAT hole punching
to allow direct communication between functions.

subscribed users. A correct implementation of this ap-
plication must ensure that e-mails sent to a list are only
delivered to subscribed users, which translates to ensur-
ing that e-mails are only delivered to users who have
subscribed to a list, and have not subsequently unsub-
scribed. This property is a safety property,we can evalu-
ate it each time an e-mail is sent, and requires reasoning
about the order in which the three functions are called.

(2) Applications often use audit logs as a way to track
access to sensitive data. Maintaining an audit log
requires ensuring that the program logs any access
to sensitive data, in a serverless application this can
require changing all functions. A bug or missing log
in any function can invalidate the audit log. Checking
that accesses are logged is a safety property, and
Watchtower can notify developers of violations.

(3) Several recent laws including GDPR [1] and CCPA [66]
require the application to obtain user consent before
processing user data. When implementing this
requirement in a serverless application, developers
generally add a function that is responsible for
recording whether or not the user consents to data use.
In this case Watchtower can be used to monitor and
detect cases where a function accesses data without
consent. This requires looking at causal logs across at
least two functions: the function that records consent
and function(s) accessing data.

Watchtower is designed to detect violations of general
safety properties similar to the ones we described above.
In order to do so it needs to reason about events occurring
in different functions and potentially over wide time spans,
which it does by reconstructing an ordered log, and checking
for violations in this log.

Threat model Watchtower assumes a non-adversarial
setting where functions correctly execute code provided by
the developer, log messages are not lost, and no log messages
are deleted until explicitly garbage collected byWatchtower.

2.3 Monitoring Distributed Applications

Detecting correctness and performance problems in
distributed systems has been studied extensively. This
area of research has led to the development of tools and
standards including Dapper [92], Zipkin [96], Canopy [63]
and OpenTracing [80] which are in use at large internet
companies (including Facebook, Google, and Twitter) and
are incorporated into widely used libraries such as GRPC. In
this section, we briefly discuss the challenges with directly
applying these existing approaches to serverless applications.

Existing work has taken two approaches to monitoring dis-
tributed systems for bugs: Thefirst, are techniques that collect
causally ordered logs and analyze them (either automatically

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

or manually) in order to detect bugs. These techniques have
been used widely in research in efforts including Pip [84],
X-Trace [46], DISTALYZER [76], and X-Ray [16]; and have
also seen deployment as a part of systems including Dapper,
Zipkin and OpenTracing. All of these techniques rely on
vector clocks [44, 68] attached to logged events in order to
reconstruct a causal sequence of events.As Fidge [44] noted in
his original work on vector clocks, they can be extended to ac-
commodate new processes by growing the vectorwhen a new
process joins and assuming an implicit value of 0 for times-
tamps before this occurs. One cannot, however, safely remove
an element from the vector. Serverless applications comprise
short-lived processes launched in response to requests, and
several concurrent processes can execute the same function.
This means that we need to track causality at the level of an
ever-growing set of processes, which in turn results in vector
clocks of unbounded size, which poses a practical challenge
with adopting this technique. Techniques such as resettable
vector clocks [15] that bound vector clock size can only be
used when applications meet specific semantic conditions
(e.g., bounded histories and frequent all-to-all communication
for RVCs), and cannot be applied more generally.

The second lineofworkbuilds on theuseof consistent snap-
shots [34] which embody state at all processes in a distribute
system. Prior work such as D3S [67] use the Chandy-Lamport
algorithm to compute a distributed state snapshot and
evaluate properties on process states. This approach does
not require logging, and hence does not require the use of
vector clocks. However, collecting consistent snapshots in
a serverless application is challenging because (a) processes
do not directly communicate with each other; (b) the number
of processes in the system changes rapidly; and (c) the appli-
cation does not control the rate of process creation nor can it
pause process creation.As a result snapshot based approaches
also cannot be directly applied to the serverless context.

In our work we chose to use the log-based approach since
the properties we considered were more easily expressed in
terms of events as we highlight next. To apply this approach
to serverless application we eschew the use of vector clocks
and instead use wall-clock time.

3 Design
Figure 1 shows Watchtower’s overall architecture and
workflow. Our current implementation targets serverless ap-
plications running onAWSLambda, andwritten in JavaScript.
For ease of exposition we use AWS services when describing
some of our design choices, and focus on functions run under
the JavaScript execution model [56]. Our techniques can be
naturally applied to other cloud providers and languages.
Watchtower takes as input a set of properties (§3.2) and

an application. The application needs to be instrumented
(§3.3) so that each function produces a sequence of structured

events (§3.1) that are logged to a logging service. In our current
implementation we support using AWS Kinesis [18] and
AWS Cloudwatch [17] for logging. The addition of structured
events to the logging service triggers Watchtower’s Event
Ingest (§3.4) function. The Event Ingest function is respon-
sible for reading events and adding them to a database which
maintains an index to allow for efficient event retrieval when
checking properties. The addition of terminal events (defined
in §3.5) to the database triggers thePropertyChecker (§3.5)
function which reads previously indexed events in order to
determine whether or not a property violation has occurred.
Watchtower generates a notification if a violation is found,
and developers can useWatchtower’s replay debugger (§4)
to identify and address its root-cause.
Running event ingest and property checking in separate

functions which are outside of the application’s critical
path allows Watchtower to minimize the impact property
checking has on application performance. Implementing this
functionality using serverless functions ensures scalability,
and minimizes deployment cost. These choices improve per-
formance and scalability for Watchtower. However, they also
mean that Watchtower cannot prevent or mitigate violations.

3.1 Structured events

Watchtower analyzes logs produced by the functions compris-
ing an application in order to detect property violations. We
require that these function logs be structured as sequences of
structured events, and be written to a logging service such as
AWS Kinesis or AWS Cloudwatch. We neither require logs to
be shared across functions, nor dowe assume any consistency
guarantees when reading events from different logs.

Each structured event specifies and event ID, a set of event
specific parameters (§3.3), and a timestamp. The structured
events in a log can be produced either from Watchtower’s
SDK instrumentation (§3.3) or from logging statements
embedded in application code. In both cases we assume that
the timestamp associated with each structured event denotes
when the event occurred, and that timestamps are synchro-
nized across the application (using NTP). Finally, as we
discuss in §5,we assume that an event once logged is visible to
Watchtower within a bounded amount of time, and that this
bound can be empirically determined. This assumption holds
due to the observation that datacenter networks are partially
synchronous [41] and SLAs provided by AWS Kinesis and
similar services ensure visibility in bounded times.

3.2 Property specification

Program properties (§2.2) inWatchtower are specified as a
family of finite state machines whose transitions are specified
in terms of IDs and parameters for structured events. The
family of state machines is parameterized using structure
event parameters, and a property instance (a single state

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

Serverless
Application Logging Service

Event Recording (§3.1, 3.3)1

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

EventType Q. Vars

2 Event Ingest (§3.4) 3 Property Checker (§3.4)

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit> �

<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

e1<latexit sha1_base64="nyo7sHz4H7qtux9mbCgT3ZYxElY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxa+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk3a95l3W6vdXlUY1j6MIZ3AOVfDgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+grjXc=</latexit>

e2<latexit sha1_base64="0yIeXIti4oWpp9KRUyzr+71RozA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQf1Qbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+16zbus1e+vKo1qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+mvjXg=</latexit>

4 Notify violation

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

�
<latexit sha1_base64="KR7Mt/phY1Kx38Up6egdPk98AOk=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqAN5WYyaYdOJmFmIpTQj3DjQhG3fo87/8Zpm4W2Hhg4nHMuc+8JUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIpylo0EYnqBqiZ4JK1DDeCdVPFMA4E6wTju5nfeWJK80Q+mknK/BiHkkecorFSpy9sNMRBperW3DnIKvEKUoUCzUHlqx8mNIuZNFSg1j3PTY2fozKcCjYt9zPNUqRjHLKepRJjpv18vu6UnFslJFGi7JOGzNXfEznGWk/iwCZjNCO97M3E/7xeZqIbP+cyzQyTdPFRlAliEjK7nYRcMWrExBKkittdCR2hQmpsQ2Vbgrd88ipp12veZa3+cFVt3BZ1lOAUzuACPLiGBtxDE1pAYQzP8ApvTuq8OO/OxyK65hQzJ/AHzucPPhOPgQ==</latexit>

Figure 1: An overview of Watchtower’s monitoring pipeline: (1) Serverless functions record structured events (§3.1, §3.3) into a logging service. (2)
The logging service triggers an ingest function (§3.4); the ingest function adds events to a database that enables quick retrieval of events associated
with a property instance (§3.2). (3) When a terminal event is added to the database, a function is triggered to check the property instance (§3.5);
the function waits for a fixed period to ensure log visibility, and then reads events from the database and determines if the property has been violated.
(4) In the event of a property violation we notify the operator.

1 {name: 'promotional',
2 quantifiedVariables: ['user_id', 'email_subject'],
3 states: ['consented'],
4 stateMachine: {
5 'CONSENT': {
6 params: ['user_id'],
7 'INITIAL' : {
8 to: 'consented'
9 },
10 },
11 'SENT_EMAIL': {
12 params: ['user_id', 'email_subject'],
13 // Starts with 'PROMOTION'
14 guard: (email_subject)
15 => email_subject.match(/^PROMOTION:/)
16 'INITIAL': {
17 to: 'FAILURE'
18 },
19 'consented' : {
20 to: 'SUCCESS'
21 }}}}

Listing 1: Example policy for an e-mail application.

machine) is instantiated for every unique combination of
parameters. Property instances start out in the INITIAL state,
and can terminate in either a FAILURE state, indicating that
the property has been violated, or a SUCCESS state, indicating
that no subsequent actions can ever violate the property.

Developers specify properties in JSON-based property lan-
guage (see e.g., Listing 1), and provide the following: (a) prop-
erty name; (b) property parameters (quantifiedVariables);
(c) a set of states; and (d) a transition function.

Listing 1 shows an example program property named
promotional. This property is parameterized by user_id

and email_subject (l2), and a new property instance is
instantiated for each unique combination of user_id and
email_subject, i.e.,whenever a promotional e-mail (uniquely
identified by a subject) is about to be sent to a user. The
property instance begins in a designated INITIAL state. The
transition function says that if the property instance is
currently in the INITIAL state, and a CONSENT event whose
user_id parameter equals the instance’s user ID is logged,
then the property instance should transition to the consented
state (l7-l9). Similarly, if the property instance is in the
INITIAL state, and a SENT_EMAIL event is logged where the
user_id matches the instance’s user ID, and where e-mail

subject begins with the string “PROMOTION:”, the property
instance transitions to the FAILURE state indicating a violation
(l16-l18). A similar SENT_EMAIL event occurring in the
consented state results in the property instance transitioning
to the SUCCESS state (l19-l21). Guards (l14-15) allow us to
further restrict the set of events that trigger a transition. The
order in which transitions are performed dictates whether
the property instance arrives at the success or failure state.

Property expressiveness and limitations Watchtower
can only be used to monitor safety properties that are
expressible as finite state machines. Additionally, the
transition function cannot read application program state
(e.g., local variables), and must infer state from past events.
Watchtower’s property checking algorithm also requires that
all property parameters appear in any terminal event, this in-
formation is used to identify the property instance that should
be evaluated (§3.5). Despite these constraints a wide variety
of practical properties can be checked withWatchtower (§6).

3.3 Event recording

Our approach to event recording, which we introduced in
§1, is to instrument SDK libraries used by developers when
accessing cloud provider services including storage services
like S3 and DynamoDB, and API gateways. The use of these
SDKs is pervasive in serverless applications, and thus instru-
menting the libraries implementing these SDKs automates
logging for most serverless applications. This is similar to the
approach adopted by DTrace [54] and Linux’s eBPF tracing
tools [33], where system-call instrumentation is used to
enable debugging and analysis of awide range of applications.
A naïve approach to instrumenting SDK libraries would

be to manually change them to add calls that log events.
Unfortunately this instrumentation would need to be redone
every time the library is updated; in August and September
2020 a new AWS SDK library version was released several
times aweek [25]. The use of updated library versions is often
mandated by organizational security policies, and changes
to the library itself are thus infeasible.
Thus, instead of manual instrumentation, we use

JavaScript’s proxy mechanism [61] to add logging without

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

changes to library code. JavaScript proxies are a mechanism
by which programs can register callbacks that are invoked
whenever a method is called on an object. In server-side
JavaScript, libraries are loaded as objects. Proxies can thus be
used to record the call, all parameters passed to the call, and
return values. We use VM2 [93], a Node.js library, to attach
proxies when loading libraries.

In order to write a proxy, one only needs to know function
names and signatures, and these external interfaces tend to
be more stable than the library itself. Watchtower currently
provides proxies for a few libraries including the AWS SDK.
Adding proxies for additional libraries merely requires emit-
ting a structured event whose event ID encode the external
service and API, and whose parameters record arguments
passed into the call and values returned from the call.
While library proxies automate application instrumen-

tation, the resulting events may be hard to work with
when writing properties. For example, the CONSENT event
in Listing 1 corresponds to one or more database writes
from the application. These application-specific events can
thus enable the use of more compact and easily understood
policies. Therefore, Watchtower allows application devel-
opers to provide application-specific semantic translations,
that turn SDK events into application-specific events.
Consequently, program properties can use a combination
of application-specific and SDK events.

Finally, application developers can also manually produce
structured log events from the application code, to record
events that do not correspond to SDK or library interactions.
In our evaluation (§6) we did not require the use of manual
logging.

3.4 Event ingest

In order to check a program propertyWatchtower needs to
correlate and order logs fromdifferent functions. For example,
checking the property in Listing 1 requires determining the
relative order between a user giving consent and an e-mail
being sent. Each of these actions occurs in a different function,
and is potentially logged in different locations. Watchtower’s
event ingest function is responsible for collecting events from
different logs and adding them to an indexed database, which
then allows events to be easily correlated and ordered when
checking properties (§3.5).
The event ingest function (which is a serverless function)

is triggered when new events are written to any function’s
log; when triggered it reads logged events and adds them
to an event database. Watchtower creates indices for
this event database using the set of property parameters
(quantifiedVariables) provided by users of Watchtower.
This index allows quick retrieval of events corresponding to
a property instance, thus speeding up property checking. For
example, the property in Listing 1 is parameterized by user ID

and e-mail subject, andWatchtower creates an index based
on these parameters. Observe that some events, e.g.,CONSENT,
that are used by the property state machine, do not include
all fields (email_subject in this case). Watchtower indexes
these properties using the subset of parameters available
(user_id), and we call partial indices projections.

In our implementation the event ingest function writes
events to DynamoDB, and later in §5 we explain howwe can
do so using a single table and two indices (one for the property
type, and another for the parameters recorded). Furthermore,
for efficiency we implement the ingest function so it reads all
new log entries in a batch, and the use of batching improves
resource efficiency (by decreasing the number of function
invoked, etc.) and results in better performance. Our use of
serverless functions ensures that event ingest can scale to
keep up with the rate at which events are logged.

3.5 Property checking

The property checker is a serverless function responsible for
processing ingested events stored in the database and deter-
mining whether or not a program property has been violated.
The property checker is triggered whenever a terminal

event, i.e., an event that can transition a property instance
to a success or failure state, is added to the database by
the event ingest function. When triggered, the property
checker function receives the terminal event as input, whose
parameters uniquely identify a property instance (§3.1). We
require that terminal events include all property parameters.
The property checker function is provided by the Watch-

tower implementation and does not need to be specialized
to a particular application or property. During deployment
Watchtower includes the property specification JSON file
(§3.2) in the function’s deployment package [24], and the
property checker reads the specification when triggered.
Thus, when triggered, the property checker knows the

property instance that it needs to check, and the statemachine
corresponding to this property instance. To check whether
or not the property instance has been violated, the checker
retrieves from the database all events belonging to this prop-
erty instance, orders them by timestamp, and then transitions
through the state machine in event order, and notifies the
user if the state machine reaches the FAILURE state.
Structured events driving a property state machine can

be produced by different serverless functions, each of which
logs independently. Events from these different logs can be
indexed by different instances of the event ingest function,
andWatchtower cannot guarantee the order in which events
are added to the database. As a result Watchtower cannot
ensure that all events affecting a property instance are already
in the database when property checking is triggered; missing
events can result in false positives or negatives. We address
this problem by delaying property checking for a fixed length

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

of time to allow all events to be added to the database. As
previously stated in §3.1, we assume that datacenter networks
are partially synchronous, logged events are visible after a
finite delay, and this logging delay can be determined (either
empirically or from documentation). Delaying execution
of the property checking algorithm by the logging delay
guarantees that all events the occurred before the terminal
event have been written before the checking algorithm runs.
Watchtower’s correctness and performance depend on

the choice of logging delay. Too short a delay can result
in false positives and negatives, while too long a delay
increases time before a violation is noticed. At present we use
a conservative delay estimate computed using documented
SLAs for the logging service and distributed database. In
practice this resulted in a logging delay of 7 seconds. In the
future we envision a more dynamic approach, where starting
from a conservative estimate, Watchtower uses empirical
measurements to progressively reduce logging delays.

Similar to the event ingest function, implementingproperty
checking as a serverless function allowsWatchtower to scale
property checking in response to changing rates of event
production. Additionally, several property checker functions
can be safely invoked in parallel, and this ensures thatWatch-
tower can scale to keep up with an increasing number of
properties. Finally, we note that for many properties a single
event can occur several times in the transition function. This
in turnmeans that a terminal eventmay not necessarily result
in a statemachine transitioning to a terminal state.However, a
property checker is invokedwhenever a terminal event occurs.
In order to reduce duplicated efforts, we save the current state
of a property instance in a database whenever the property
checking algorithm is run but does not reach a terminal state.
Subsequent invocations of the property checking algorithm
for this instance begin execution from the saved state.

Checker run example Consider a mailing list applica-
tion, the property in Listing 1, and the following sequence of
events: (a) at time t = 0, Alice, with e-mail address a@me.com,
signs up to receive promotional e-mails, resulting in the ap-
plication logging a CONSENT event with the e-mail address as
a parameter; (b) at time t = 1, the application sends Alice an
e-mail with the subject “PROMOTION: Your first coupon”,
which results in the application logging a SENT_EMAIL event
with the subject and e-mail address. Each of these logs trigger
the event ingest function, which adds them to the database.
The SENT_EMAIL function is a terminal event and adding it to
the database triggers the property checker function. When
first triggered the property checker functionwaits for logging
delay to elapse before running the checking algorithm. The
checkingalgorithmcreates theproperty instance, searches the
database for a CONSENT event matching Alice’s e-mail address,
and when found checks to make sure that the consent event’s

timestamp predates the SENT_EMAIL timestamp, which causes
theproperty instance to transition to theconsented state.Next,
the checker transitionsusing theSENT_EMAIL event andarrives
at the SUCCESS state, showing the property is not violated.

Dealingwith clock skew Watchtower relies on accurate
timestamps to determine event order. Current serverless im-
plementation including ones offered by Amazon, Azure and
Google use NTP for time synchronization. Prior studies [65,
78] have shown thatNTPwithin a datacenter can synchronize
clocks to within a fewmicroseconds and can provide millisec-
ond level accuracy in the wide area. As a result Watchtower
must rely on alternate mechanisms when reasoning about
the order of events that occur within a small time interval.

Our current implementation assumes that ordering events
using timestamps is insufficient if two events occur within
10ms of each other. In this case rather than trying to order
these events,Watchtower considers all possible permutations
of such events when checking properties, and decides that a
property has been violated if any permutationwould result in
a violation.Watchtower uses dynamic partial order reduction
(DPOR) [45] to reduce the number of permuted schedules
it needs to consider. DPOR uses the observation that many
events are commutative, i.e., their order has no impact on the
results of the property checking algorithm, to eliminate sched-
uleswhich are equivalent to another schedule.Needing to con-
sider multiple schedules also complicates the task of saving a
property instance’s state, because a property instance can be
in multiple states simultaneously. Watchtower handles this
by instead saving a vector of states for each property instance.
While the design above is sufficient for ensuring cor-

rectness, it potentially carries a performance penalty
because of the additional schedules that must be checked.
However, in practicewe found thatwhen checking properties,
Watchtower generally only needs to consider a small number
of schedules, often one. This is because the property checker
only considers the order of events that correspond to a single
property instance (§3.2), a small subset of all events produced
by an application. Additionally, in our experience property
instances typically relate events triggered by a few (often
one) users. In this case human reaction time limits the rate
at which events corresponding to a single instance occur,
and thus increases the likelihood that timestamps suffice
when ordering events. In our case studies (§6) we found no
instances where we needed to consider permuted resources.
In §7 we use synthetic microbenchmarks to evaluate the
performance of our techniques for addressing clock skew.

Finally, consideringall permutations and reportinganerror
when any of them leads to an error can result in false-positives
whereWatchtower will report an error in the absence of an

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

actual violation. As a result Watchtower is sound (i.e., all ac-
tual violations are reported), but not complete (i.e., the system
might report an error even when none occurred in reality).

3.6 Garbage collection

TheWatchtower ingest function (§3.4) appends new events
to the database table, but none of the mechanisms described
so far subsequently delete these events. This can result in
unbounded growth in table size. Cloud databases, including
DynamoDB, charge by the volume of data contained in a table,
and this growth can result in high costs. In order to address
this growth, Watchtower includes a garbage collection
algorithm that deletes events which are guaranteed to never
be accessed by the property checking function in the future.
These are events which do not require the use of projection,
and for which a terminal event occurred sufficiently in the
past (such that log delay has elapsed).We cannot safely collect
events that require the use of projections: a single such event
can correspond to an unbounded set of property instances,
and we can never determine that no subsequent terminal
event will correspond to such an instance. We also analyze
application properties to determine cases where there is a cy-
cle between two events (e.g., a consent and withdraw consent
event), in which case we must merely keep the latest event
in the cycle. Garbage collection is triggered periodically, and
operates asynchronously and thus does not affect detection
latency. By utilizing TTL features of the cloud database,
garbage collection does not incur any additional cost (§5).

3.7 Retroactive checking

So far we have assumed that program properties are known
when an application is executed. However, the set of
correctness properties a program needs to meet can change
over time, with new properties added due to new regulatory
or organizational changes, or the addition of new correctness
requirements. Watchtower includes a retroactive checking
mechanisms that can determine whether an application has
previously violated a newly added property.
Retroactive checking inWatchtower builds on the obser-

vation that logging SDK calls (§3.1) is sufficient to capture
most program events, and can only be used if a property does
not rely on new events added to the application. Additionally,
retroactive checking requires access to all events logged
by the system. In order to cheaply enable access to historic
events, Watchtower configures the log service so that in
addition to triggering the event ingest function, the log
service also writes logged events to Amazon S3, a cheap blob
store. Retroactive checking (and debugging as we explain
below) reads events logged to the blob store when required.
When a new application property is added, Watchtower

runs retroactive checking by reading events from the blob
store and running the ingest process on these events. This

retroactive-ingest process writes to a new database, separate
from the one used for runtime checking, and this new
database is configured to never trigger property checking.
Once retroactive-ingest is complete,Watchtower identifies all
ingested terminal events that belong to the new property and
for which the logging delay has expired. Watchtower then
triggers property checking for these identified events, and
notifies the user of any violations identified. After this prop-
erty checking step has been completed, Watchtower deletes
the database created by the retroactive-ingest process. The
use of a different database means that application execution
does not need to be paused during retroactive checking.

4 Debugging
Once a property violation is detected, developers need to
debug the program in order to determine the cause of the
violation. The cause of a violation might lie in the past (e.g.,
in a previous user interaction), and currently this analysis
necessitates manual log inspection to identify an hypothesis
for what might have caused a violation. Confirming or
rejecting these hypotheses is equally challenging: existing
tools neither provide mechanisms for developers to recreate
previous execution points in serverless applications, nor do
they provide mechanisms to insert breakpoints or inspect
the state of an application during execution. The absence of
such mechanismmakes it challenging to address violations.

Watchtower includesa record-and-replaydebugger [12, 57]
to simplify this task. This debugger can recreate application
state and re-execute any function previously executed by the
serverless application on a developer’s local machine. De-
velopers can then use existing tools, e.g.,Node Inspector [77],
to inspect its state, step through its execution, etc.
To implement record-and-replay debugging, Watchtower

logs parameters and return values for all non-deterministic
calls including calls to external services, calls that read
time, and ones that generate random numbers. We observe
thatWatchtower’s SDK logging (§3.3) already records calls,
arguments and return values for all interactionswith external
services, covering a large fraction of non-deterministic calls.
Watchtower uses the sameproxymechanism to log structured
events for the remaining non-deterministic function calls. In
contrast to works like ODR [12],Watchtower does not need to
account for non-dereminism resulting from scheduling and
data-races due to preemptive multi-threading thanks to our
focus on JavaScript application which are inherently single
threaded.4 On the other hand, asynchronous calls (through
callbacks or promises) are widely used in JavaScript applica-
tions, andWatchtower does need to record the order inwhich
asynchronous calls return. In order to do soWatchtower also
4However, we believe that this is not a fundamental limitation. Previous
works, such as RR [79], have shown how record-and-replay debugging can
be applied to multithreaded programs.

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

emits a structured event every time an asynchronous call
returns, and this allows thedebugger to determine theorder in
which callbacks should be invoked during replay. As we pre-
viously described in §3.7, Watchtower configures the logging
service to write all structured event to a durable blob store.
During replay, Watchtower reads event logs for the func-

tions the developer wants to reproduce from the blob store.
The replay debugger then creates a process for each function
that the developer wants to inspect. The replay mechanism
uses VM2 (also used in §3.3) to replace SDK calls and non-
deterministic calls with proxies that replay recorded values.
In some cases, the root-cause of a violation might lie in a

function executed in the past. In these cases developers need
to identify the causal chain that lead to the violation. We ob-
serve that functions in a serverless application communicate
using external services such as S3 or SQS (§2.1).Watchtower’s
SDK instrumentation records all accesses to these services,
and henceWatchtower can reconstruct causal links between
functions using this information, allowing developers to
follow the causal chain to the root cause of the violation.
TheWatchtower debugger thus reduces developer effort

when debugging serverless applications, and allows devel-
opers to both identify and address the cause of application
violations. Since the debugger largely reuses the same
instrumentation used by Watchtower for monitoring, the
record-and-replay debugging capabilities of Watchtower
add negligible additional overheads on top of those already
used to store the history used for allowing retroactive
checking (§3.7). Additionally, the debugger can be used to
investigate application problems beyond program property
violations, and Watchtower’s debugging capabilities are
useful independent of its monitoring capabilities.

5 Implementation
Wehave implementedWatchtower in JavaScript (ES6). Thede-
velopment of Watchtower required roughly one person-year
of effort. In addition to implementing the core components
ofWatchtower, we have also instrumented several libraries
and built-in Node.js modules used by the applications we
evaluate (§6) including: aws-sdkAPIs for S3, DynamoDB, and
Kinesis; node-fetch for HTTP access; twit for interacting
with twitter; sendgrid for sending emails; and fs for file
system access. We did not need to make any modification
to the application code in order to facilitate instrumentation.
Our implementation supports two logging back-ends:

AWS Kinesis and AWS CloudWatch. Both services can be
configured to trigger a Lambda function when new log
events arrive; we use this mechanism to trigger the ingestion
function (§3.4) and feed the event logs into it.
The ingestion function of Watchtower stores events in

a DynamoDB table. DynamoDB compound keys consist of
two fields, a partition key and a sort key. DynamoDB uses the

partition key to determine which partition the data is stored
on, and query calls on DynamoDB tables rely on partitions
to efficiently return sets of data. Watchtower constructs an
instance string for each property instance by concatenating
the property name, and the sequence of parameter names
and values. This guarantees that each property instance has a
unique string, and this string is then used as the partition key.
The keys of projection events are created using the properties
that are available in the projection. The sort key of each
event is a unique identifier, guaranteeing an overall unique
compound key per stored event.
The checker function (§3.5) uses the same process to con-

struct event keys when querying DynamoDB. The checker
then makes a query call to the events table per projection,
reading all of the events of the property. The partition locality
of data improves the efficiency of the querying process.
When the checker function has processed all recorded

events for a property instance (which might not be sufficient
to decide whether a violation occurred or not) it checkpoints
the state of the instance in aDynamoDB table. The checker be-
gins subsequent checks for this property instance by reading
the checkpoint, minimizing queries to the events table.
When a property instance reaches a terminal event, or

when the instance is checkpointed, instance events can
be safely deleted. The Watchtower garbage collection
mechanism utilizes DynamoDB’s TTL (Time to Live) feature
tomark events for deletion by adding an expiration field set to
the current time. DynamoDB periodically runs a background
process that deletes expired items in the table.
Our implementation targets Node.js-based applications

running on AWS Lambda. However, these limitations are
not fundamental to theWatchtower architecture, andWatch-
tower can be modified to run on a variety of cloud platforms.
Watchtower relies on the following AWS services: Kinesis
for recording events and instance checker notifications, Dy-
namoDB and S3 for event storage, AWS Lambda for running
the ingestion and checker components, StepFunctions for
orchestrating the delayed checker execution flow, and SES
for notifying the user of violations. Other providers offer
similar services with nearly identical semantics and APIs.
Porting Watchtower to run on a different cloud platform
would consist mainly of changing cloud service API calls.

Watchtower requires that the monitored application
produce structured log events (§3.1). We achieve this by
instrumenting the application (§3.3), using the vm2 sandbox
and ES6 proxies to inject event emitting code into the
application without modifying any of its code. However, the
production of structured logged events used byWatchtower
does not necessitate the use of either serverless applications
or JavaScript. Similar black-box recording behavior can
be achieved by using AOP tools such as AspectJ [64] for
JVM-based languages, as well as other metaprogramming

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

Table 1: Serverless applications used to evaluate Watchtower.
Application Description

RealWorld[8] a blogging platform similar to Medium
Bitwarden[30] a cloud-hosted password manager similar to LastPass
pingbot[7] a bot that monitors the health of website
YoYo[10] an embeddable comment engine similar to disqus
Nietzsche[5] a web scraper and twitter bot for literary quotes
Serverless Video Analysis[11] A web service for processing and analyzing videos

mechanisms available in various programming languages.
Finally, log events can even be produced explicitly by
manually annotating the code, extending the applicability
of our approach to any programming language and runtime.
Watchtower’s source code is available at https:

//github.com/kalevalp/watchtower.

6 Case study
We evaluateWatchtower’s generality by using it to monitor
the correctness of six open-source serverless applications
(Table 1). In this section we provide a detailed description of
the most complex one: RealWorld. We detail the correctness
properties we monitored for this application, and perfor-
mance measurements from the deployment ofWatchtower
alongside RealWorld. A detailed evaluation of Watchtower
using synthetic microbenchmarks is discussed in §7.
RealWorld [8] is a family of interoperable full-stack

implementations of a blogging platform (a Medium.com
clone app) written using different programming languages
and technology stacks. RealWorld DynamoDB Lambda [3]
is a cloud native implementation of the RealWorld back-end,
using AWS Lambda for compute and AWS DynamoDB for
storage. We extended the application with lambda functions
that grant and revoke user data processing consent.

6.1 Correctness properties for RealWorld

We ran the RealWorld application with 10 correctness
properties. One of the correctness properties expresses
compliance with GDPR article 7. The other 9 properties were
derived by generalizing existing system tests.

GDPR Article 7 compliance Article 7 of the GDPR
requires that “[w]here processing is based on consent, the
controller shall be able to demonstrate that the data subject
has consented to processing of his or her personal data” [1].
In order to monitor compliance with this requirement, we
defined a correctness property that is violated whenever data
is processed without consent (either because none was given,
or because it was revoked). The application emits CONSENTED,
and REVOKED_CONSENT events when the functions for granting
and revoking consent are called, and PROCESSING_DATA events
when accessing user data.

Correctness properties derived from tests The Real-
World application contains 57 integration tests. These tests
serve as a description of what the correct behavior of the

Table 2: Correctness properties in the RealWorld case study.
Property Correctness Criterion

Article Created login by author
Article Retrieved article created
Article Deleted article created, login by author
Article Fave article created, login by reader
Article Listed article created, login by reader
Article in Feed article created, reader follows author
Comment Created article created, login by reader
Comment Deleted comment created, login by comment author
Comment Retrieved comment created

system is, as software developers are expected to cover all
of the important and probable system flows with dedicated
tests. We used these system tests as a guide for specifying
correctness properties. We defined 9 correctness properties,
based on 31 of the 57 tests. The tests we chose describe system
behaviors across several different serverless functions, and
involving non-trivial causality. The resulting properties are
global, application-wide, distributed properties. They cannot
be enforced by assertions in the code, and require a distributed
monitoring system such as Watchtower. The remaining 26
tests described local function behavior (e.g., a test that pub-
lishes an article, and checks that the operationwas successful).
While such properties can be monitored byWatchtower, we
chose to focusonproperties that require adistributedmonitor-
ing system, and cannot be addressed by simpler mechanisms.
Table 2 lists the correctness properties and gives a brief

summary of the correctness criterion of each property. All
properties require that several events, emitted by different
parts of the application, occur in a specific order. For example,
the ‘Comment Deleted’ property (row 8) requires that if some
user deletes a comment from an article, then the comment
had previously been created by the user on the article, the
comment has not been deleted since, the article has not
been deleted since the comment was created, the user had
previously logged in, and has not logged out since then. Each
of these events is emitted by a different Lambda function.

6.2 Performance whenmonitoring RealWorld

To evaluateWatchtower’s monitoring performance, we ran
a test scenario, invoking all components of the RealWorld
back-end. The scenario consisted of 130 application requests.
We repeated the scenario 25 times. We measured end-to-end
execution times of each request, running with and without
Watchtower. The mean request running time without
Watchtower recording was 76.93ms (𝜎 =83.89), whereas with
Watchtower recording the mean increased by 25.29ms to
102.22ms (𝜎 = 122.64), an increase of 32%, representing an
additional $0.000000422 in compute expenses5. The 99th

5All reported price figures assume running 1024MB lambda instances in the
AWS region us-east-1. Price information is up-to-date as of September 2021.

https://github.com/kalevalp/watchtower
https://github.com/kalevalp/watchtower

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0 650 1,300 1,950 2,600 3,250
0

5,000

10,000

15,000

20,000

Application requests

O
bj
ec
ts
in

D
yn

am
oD

B Deleted Total

Figure 2: Objects stored in the events table on DynamoDB.

Table 3: Serverless applications used in microbenchmarks.
Application Description

simple emit a single event
event+sleep emit a single event, then sleep for several milliseconds
sleep+event sleep for several milliseconds, then emit a single event
loop emit a sequence of events, separated by periods of sleep

percentile running time without Watchtower recording is
292.53ms, whereas with Watchtower recording the 99th
percentile is 547.02ms, an increase of 254.49ms, or 87%.

Additionally, we measured the running times of the inges-
tion and the checker functions. The average amount of ingest
Lambda compute time performed per application request was
53.45ms, and the average amount of checker Lambda compute
time was 70.99ms per request, adding an additional 124.44ms
ofLambdacompute resourcesper requestperformed.This rep-
resents an added expense of $0.000002478 per application re-
quest. Recall that the ingestion and checker functions run out-
of-band, separately from themonitored application, and these
running times have no effect on the application execution.
In order to evaluate the effectiveness of our garbage col-

lection optimization (§3.6) we recorded the number of event
objects stored in the DynamoDB events table during the run
of the scenario. Figure 2 shows the number of stored events
as a function of the number of application requests. The solid
line represents the total number of event objects written
to DynamoDB. The dashed line represents the number of
event objects deleted by the garbage collection optimization.
The area between the two lines (marked by vertical lines)
represents event objects written to DynamoDB and not
deleted by the garbage collection optimization. Objects not
deleted by the garbage collection are either projection events
that cannot be safely deleted, or full-instance events whose
property instances have not reached a final state yet.

7 Detailed Evaluation
In this section we present our evaluation of Watchtower
performance. We designed several simple synthetic appli-
cations, listed in Table 3, to perform a detailed evaluation
of the performance aspects of Watchtower. Applications
were executed on AWS Lambda; we used a t3a.medium EC2
instance, deployed to the same region as the applications, to
launch applications and record measurements.

0

Ev
en
t

12

Kin
esi
s (i
)

895

Ing
est
ion

895

Dy
na
mo
DB

930

Kin
esi
s (i
i)

9339

Ch
eck
er

9386

De
tec
tio
n

Time (ms)

Figure 3: A breakdown of Watchtower execution. ‘Kinesis (i)’ is the
Kinesis arrival time of the structured logmessage; ‘Ingestion’ is the start
time of the ingestion function; ‘DynamoDB’ is the time the processed
eventwaswritten toDynamoDB; ‘Kinesis (ii)’ is theKinesis arrival time
of the property instance checker notification; ‘Checker’ is the start time
of the checker function; and ‘Detection’ is the violation detection time.

Table 4: Overheads of structured logging.
Baseline CloudWatch Kinesis

Application Mean 𝜎 Δ Mean 𝜎 Δ Mean 𝜎 Δ

Sleep+event 101.77 0.77 0 102.47 1.23 0.69 124.05 10.57 22.27
Event+sleep 101.77 1.02 0 102.34 1.06 0.56 104.45 5.92 2.67

7.1 Performance

Figure 3 shows the average time spent (in milliseconds) in
each stage of theWatchtower pipeline when detecting a vio-
lation. We evaluate this using the loop application. We logged
events to Kinesis and used 7 seconds as our logging delay
(§3.5). The total time required to detect and notify a user of a
violation (the detection latency) was 9386ms. We observe that
a majority (99%) of the time is spent before the Checker stage
while waiting for Kinesis to invoke the ingest and checker
functions, and for the logging delay to expire. Below we eval-
uate the runtime overheads of event logging, and evaluate the
trade-off between application overhead and detection latency.

Overhead of structured logging As noted in §3.3,
structured event logging is performed by application code,
and hence overheads in logging can affect the application’s
fast path. In order to evaluate this impact we measured
logging overhead when using AWS CloudWatch and AWS
Kinesis. CloudWatch batches log writes, thus amortizing the
cost of logging. This amortization however comes at the cost
of increased delays before a property can be checked. Kinesis,
by contrast, contacts the log service immediately, thus
increasing logging overhead but allowing faster property
checking. Our implementation supports both, and in both
cases we use non-blocking asynchronous calls for logging
in order to minimize application overheads.
We measure overheads using the sleep+event, and

event+sleep applications. In the second case our use of
asynchronous calls allows us to overlap the time spent
logging with application logic. This is not the case for the
first benchmark, where we expect that logging overhead
will impact the function execution duration. In Table 4 we
show latency (measured as function execution time) for these
applications without structured logging (baseline), when
logs are written to CloudWatch and when logs are written

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

0 100 200 300 400 500 600 700 800 900 1,000

6

8

10

12

14

Requests per second

de
te
ct
io
n
la
te
nc
y
(s
) detection latency

Figure 4: Detection latency as a function of application load.

to Kinesis. As expected, CloudWatch logging adds minimal
overhead (1-2ms), whereas Kinesis logging adds a more
significant overheadof ~20ms. In both cases the asynchronous
calls overlap with the event+sleep execution, and have a
negligible impact on the execution time of that application.

Logging latency Next, we measure the delay between
an application emitting a structured log event and the
Watchtower ingest function being triggered. We do so using
the simple application. We measured logging latencies using
both AWS Kinesis and Cloudwatch. When using Kinesis, the
logging latency is 944ms on average, while for Cloudwatch it
was 5194ms on average. However, as we previously observed,
logging to Kinesis imposes a larger overhead on application
performance, and developers must trade-off application
overheads and detection latency in choosing between these
options.
7.2 Scalability

In this section we investigate the scaling behavior ofWatch-
tower as we vary (a) application load; (b) the complexity of
the correctness properties monitored; and (c) the number of
correctness properties monitored.

Scaling withWorkload Next, we look atWatchtower’s
behavior as a function of workload changes. Recall that we
implement ingest and property checking using serverless
functions in order to ensure thatWatchtower’s performance
does not degrade with changes in workload. In order to
observe scaling behavior, we use the loop application, and
scale the application call request rate from 60 invocations/s to
950 invocations/s6. In Fig. 4 wemeasure the detection latency
as a function of the request rate. We find that detection
time does not increase with increased request rates, thus
demonstrating that Watchtower can scale to match the
application’s scaling behavior.

Property Complexity In Watchtower the size of a
property (i.e., number of states) closely corresponds to its
complexity. Therefore we evaluate Watchtower’s effective-
ness in analyzing complex properties by varying property
size and measuring run times of the checker and ingest
functions. Since both functions perform local operations on
6Our experiments were restricted by the AWS Lambda global limit of 1000
concurrent function invocations.

0 200 400 600 800 1,000 1,200 1,400

60

80

100

120

140

Property size (# states)

Ch
ec
ke
rt
im

e(
m
s)

0

20

40

60

80

100

In
ge
st
io
n
tim

e(
m
s)

checker ingestion

Figure 5: Run times as a function of property size.

0 5 10 15 20 25 30 35 40 45 50

100

200

300

disjoint properties

Ch
ec
ke
rt
im

e(
m
s)

0

50

100

150

In
ge
st
io
n
tim

e(
m
s)

checker ingestion

Figure 6: Run times per number of disjoint properties.

0 5 10 15 20 25 30 35 40 45 50

100

200

300

shared properties

Ch
ec
ke
rt
im

e(
m
s)

0

50

100

150

In
ge
st
io
n
tim

e(
m
s)

checker ingestion

Figure 7: Run times per number of shared properties.

the property state machine, we do not expect the size of the
property to impact the running times. Indeed, as Fig. 5 shows,
the size of the property does not affect execution times.

Number of properties We measure the impact of the
number of properties beingmonitored onWatchtower perfor-
mance in two different cases—(a) the properties share events,
and (b) the properties have disjoint sets of events.When prop-
erties share events, we expect the checker and ingestion to ex-
ecute longer aswe addmore properties. This is because events
may lead to indexing and checking multiple different prop-
erties, causing increased workload per event. Indeed, Fig. 7
shows that the execution times increase as we add properties
that share events.However,we are encouragedby the fact that
the growth is mild—having increased the number of proper-
tiesfifty-fold,we seea twofold increase in theaverage running
time, from 91ms to 175ms in the checker, and from 52ms to
107ms in the ingestion function.Whenproperties donot share
events, we do not expect an increase in the running times of
the checker and the ingestion, and indeedFig. 6 illustrates that.

7.3 Effectiveness of the DPOROptimization

We investigate the effectiveness of our reorderingmechanism
and dynamic partial order reduction optimization (§3.5) in
handling events that occur within the clock-skew window.
We run a variant of the simple application, in which all events
belong to the same property instance, guaranteeing that if

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

concurrent function invocations

Ch
ec
ke
rt
im

e(
s)

100

200

300

Ch
ec
ke
rm

em
or
y
(M

B)time (ms) memory

Figure 8: Checker reorder scalability microbenchmark.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
101

1015

1029

1043

concurrent function invocations

re
or
de
rin

gs
(lo

g
sc
al
e) no dpor dpor applied

Figure 9: Number of permutations that the checker needs to process
with and without the DPOR optimization.

1 2 3 4 5 6 10 12 15 20 30

0

50

100

concurrent function invocations

Su
cc
es
sf
ul
ru
ns

(%
) No DPOR DPOR

Figure 10: Percentage of successful checker runs.

two event timestamps are within 10ms of each other, the
checker will have to consider both orders. We increase the
rate of concurrency from 1 (no concurrency) to 30 concurrent
function invocations. We ensure that the overall number of
events remains the same for every rate of concurrency, so
that the checker always processes a log of the same size.
Fig. 8 shows the running times (in ms) and memory

usage of the checker as a function of the concurrency of the
function. As expected, we can see an increase in both time
andmemory usage as the rate of concurrency increases. Fig. 9
shows the number of different permutations that arise as a
result of the increase in contention (dashed line), compared to
the number of permutations traversed in practice as a result
of the DPOR optimization. Fig. 10 shows the percentage of
checker runs that ended successfully (i.e., did not fail due to
a timeout or an out of memory error).

8 Related work
In §2.3 we discussed the related literature on distributed
systems monitoring. Here we briefly discuss the related work
on runtime-verification and record and replay debugging.

Runtimeverificationof distributed systems Runtime
verification (RV) tools detect violations of correctness prop-
erties during the execution of the application. RV research

has covered various aspects of verification systems, property
definition languages, and monitored applications [39, 42].
Runtime verification of distributed system [31, 35, 36, 40, 55,
74, 75, 89, 95] can be classified as either distributed [26, 28,
29, 49, 50, 58, 60] or centralized [27, 28] monitoring systems.

In distributedmonitoring systems, every executing process
has a localmonitor and the local states of processes are sent to
all other processes. In centralized monitoring systems, every
process in the system sends its local state to a dedicatedmoni-
tor process.Watchtower takes a hybrid approach of a logically
centralizedmonitor, i.e., all processes in our system send their
local state toa central service, but running it inaphysicallydis-
tributed way, taking advantage of the natural parallelization
inherent to monitoring parameterized properties.

Properties defined as quantified automata Reger et
al. [83] had previously used quantified state machine to
define properties for monitoring Java applications, similar to
the parameterized automata inWatchtower. When events in
the system are executedwith specific values for the transition
parameters, they instantiate a quantifier-free automaton, and
check that the execution does not violate it.

Record and replay debugging The area of record and
replay debugging had been extensively studied, with works
focusing on different runtime environments [59, 69, 79, 88],
and language agnostic recording [13, 32, 85, 86]. The
single-threaded nature of the JavaScript runtime removes the
need to record scheduling information, making the recording
process a natural extension of the recording mechanism used
to record application events. This is similar to the approach
taken by the initial versions of Jalangi [88].

9 Conclusion

Detecting and debugging correctness violations in serverless
applications is an essential step for wider adoption of this
paradigm. In this paper we describedWatchtower, which to
the best of our knowledge, is the first system to address this
growing requirement. UsingWatchtower requires little or no
modification to the application, and the only effort required
is for expressing correctness properties as finite automata.
Watchtower imposes minimal overheads on the application,
and its detection mechanisms can elastically scale with the
application. As a result Watchtower provides a practical path
to detecting bugs in running serverless applications.

Acknowledgments

We thank the anonymous referees for their insightful com-
ments. This research was partially supported by the Israel
Science Foundation (ISF) grantNo. 1810/18, and byLenBlavat-
nik and the Blavatnik Family foundation.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

References

[1] 2016. Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). OJ L 119 (2016), 1–88.

[2] 2019. Building a truly global e-commerce platform — part 2: architecture
& technology. https://blog.labdigital.nl/building-a-truly-global-e-
commerce-platform-part-2-architecture-technology-4a3f1afd5616.

[3] 2019. 𝜆 serverless backend implementation for RealWorld using AWS
DynamoDB + Lambda. https://github.com/anishkny/realworld-
dynamodb-lambda.

[4] 2019. MoonMail - Email marketing platform for bulk emailing via
Amazon SES. https://moonmail.io/.

[5] 2019. Nietzsche - Scrap quotes from Goodreads and schedule random
tweets. https://github.com/rpidanny/Nietzsche.

[6] 2019.Noiiice -a serverlessblogbuilt onNuxtJS,AWS, serverless framework,
and irrational exuberance. https://github.com/DylanAllen/noiiice.

[7] 2019. pingbot - A website monitoring/health-checking tool based on
serverless architecture. https://github.com/toricls/pingbot.

[8] 2019. RealWorld. https://github.com/gothinkster/realworld.
[9] 2019. Why we use serverless architecture at Freetrade.

https://blog.freetrade.io/why-we-use-serverless-architecture-
at-freetrade-e668c7bf5d42.

[10] 2019. YoYo - A dead simple comment engine built on top of
AWS lambda and React, alternative comment service to Disqus.
https://github.com/metrue/YoYo.

[11] 2020. Serverless Video Preview and Analysis Service. https:
//github.com/laardee/video-preview-and-analysis-service.

[12] Gautam Altekar and Ion Stoica. 2009. ODR: output-deterministic
replay for multicore debugging. In SOSP.

[13] Silviu Andrica and George Candea. 2011. WaRR: A tool for high-fidelity
web application record and replay. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN). IEEE, 403–410.

[14] Apache. 2021. OpenWhisk. https://github.com/apache/openwhisk.
[15] Anish Arora, Sandeep Kulkarni, and Murat Demirbas. 2000. Resettable

vector clocks. In PODC.
[16] Mona Attariyan, MIchael Chow, and Jason Flinn. 2012. X-ray:

Automating Root-Cause Diagnosis of Performance Anomalies in
Production Software. InOSDI.

[17] AWS. 2019. Amazon CloudWatch. https://aws.amazon.com/
cloudwatch/.

[18] AWS. 2019. Amazon Kinesis. https://aws.amazon.com/kinesis/.
[19] AWS. 2020. Amazon API Gateway. https://aws.amazon.com/api-

gateway/.
[20] AWS. 2020. Amazon Aurora. https://aws.amazon.com/rds/aurora/.
[21] AWS. 2020. Amazon DynamoDB. https://aws.amazon.com/dynamodb/.
[22] AWS. 2020. Amazon S3. https://aws.amazon.com/s3/.
[23] AWS. 2020. AWS Lambda. https://aws.amazon.com/lambda/.
[24] AWS lambda dep 2020. AWS Lambda deployment package in Node.js.

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html.
[25] AWS SDK Release 2020. aws-sdk-js: History for CHANGELOG.md.

https://github.com/aws/aws-sdk-js/commits/master/CHANGELOG.
md.

[26] Özalp Babaoğlu, Eddy Fromentin, and Michel Raynal. 1995. Debugging
Distributed Executions by Using Language Recognition. In ICPP (2).
55–62.

[27] Özalp Babaoğlu, Eddy Fromentin, andMichel Raynal. 1996. A unified
framework for the specification and run-time detection of dynamic
properties in distributed computations. Journal of Systems and Software
33, 3 (1996), 287–298.

[28] Özalp Babaoğlu and Keith Marzullo. 1993. Consistent global states
of distributed systems: Fundamental concepts and mechanisms.
Distributed Systems 53 (1993).

[29] Özalp Babaoğlu andMichel Raynal. 1995. Specification and verification
of dynamic properties in distributed computations. J. Parallel and
Distrib. Comput. 28, 2 (1995), 173–185.

[30] Bitwarden 2019. Bitwarden. https://bitwarden.com/.
[31] Bernd Bruegge, Tim Gottschalk, and Bin Luo. 1993. A framework

for dynamic program analyzers. In Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications. 65–82.

[32] Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. 2013.
Interactive record/replay for web application debugging. In Proceedings
of the 26th annual ACM symposium on User interface software and
technology. ACM, 473–484.

[33] David Calavera and Lorenzo Fontana. 2019. Linux Observability with
BPF: Advanced Programming for Performance Analysis and Networking.
O’Reilly Media.

[34] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots:
Determining global states of distributed systems. ACM Transactions
on Computer Systems (TOCS) 3, 1 (1985), 63–75.

[35] Himanshu Chauhan, Vijay K Garg, Aravind Natarajan, and Neeraj
Mittal. 2013. A distributed abstraction algorithm for online predicate
detection. In 2013 IEEE 32nd International Symposium on Reliable
Distributed Systems. IEEE, 101–110.

[36] Sarah E Chodrow andMohamed GGouda. 1995. Implementation of the
sentry system. Software: Practice and Experience 25, 4 (1995), 373–387.

[37] Cloudflare. 2020. Cloudflare Workers. https://workers.cloudflare.com/.
[38] Jeremy Daly. 2020. Serverless Community Survey 2020.

https://github.com/jeremydaly/serverless-community-survey-2020.
[39] Nelly Delgado, Ann Q Gates, and Steve Roach. 2004. A taxonomy and

catalog of runtime software-fault monitoring tools. IEEE Transactions
on software Engineering 30, 12 (2004), 859–872.

[40] Christian Drabek and Gereon Weiss. 2017. DANA-Description and
Analysis of Networked Applications.. In RV-CuBES. 71–80.

[41] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus
in the presence of partial synchrony. Journal of the ACM (JACM) 35,
2 (1988), 288–323.

[42] Yliès Falcone, Srđan Krstić, Giles Reger, and Dmitriy Traytel. 2018. A
taxonomy for classifying runtime verification tools. In International
Conference on Runtime Verification. Springer, 241–262.

[43] Fastly. 2020. Fastly Compute@Edge. https://www.fastly.com/products/
edge-compute/serverless.

[44] Colin J Fidge. 1988. Partial orders for parallel debugging. In Proceedings
of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and
Distributed debugging. 183–194.

[45] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order
reduction for model checking software. ACM Sigplan Notices 40, 1
(2005), 110–121.

[46] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and
Ion Stoica. 2007. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX conference on Networked systems design
& implementation. USENIX Association, 20–20.

[47] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 475–488.

[48] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam,William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. 2017. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In 14th

https://blog.labdigital.nl/building-a-truly-global-e-commerce-platform-part-2-architecture-technology-4a3f1afd5616
https://blog.labdigital.nl/building-a-truly-global-e-commerce-platform-part-2-architecture-technology-4a3f1afd5616
https://github.com/anishkny/realworld-dynamodb-lambda
https://github.com/anishkny/realworld-dynamodb-lambda
https://moonmail.io/
https://github.com/rpidanny/Nietzsche
https://github.com/DylanAllen/noiiice
https://github.com/toricls/pingbot
https://github.com/gothinkster/realworld
https://blog.freetrade.io/why-we-use-serverless-architecture-at-freetrade-e668c7bf5d42
https://blog.freetrade.io/why-we-use-serverless-architecture-at-freetrade-e668c7bf5d42
https://github.com/metrue/YoYo
https://github.com/laardee/video-preview-and-analysis-service
https://github.com/laardee/video-preview-and-analysis-service
https://github.com/apache/openwhisk
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html
https://github.com/aws/aws-sdk-js/commits/master/CHANGELOG.md
https://github.com/aws/aws-sdk-js/commits/master/CHANGELOG.md
https://bitwarden.com/
https://workers.cloudflare.com/
https://github.com/jeremydaly/serverless-community-survey-2020
https://www.fastly.com/products/edge-compute/serverless
https://www.fastly.com/products/edge-compute/serverless

Cloud-Scale Runtime Verification of Serverless Applications SoCC ’21, November 1–4, 2021, Seattle, WA, USA

USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). 363–376.

[49] EddyFromentin,MichelRaynal,VijayKGarg, andAlexTomlinson. 1994.
On thefly testingof regularpatterns indistributedcomputations. In1994
Internatonal Conference on Parallel Processing Vol. 2, Vol. 2. IEEE, 73–76.

[50] Ornan Gerstel, Shmuel Zaks, Michel Hurfin, Noël Plouzeau, and
Michel Raynal. 1994. On-the-fly replay: a practical paradigm and its
implementation for distributed debugging. In Proceedings of 1994 6th
IEEE Symposium on Parallel and Distributed Processing. IEEE, 266–272.

[51] Google. 2020. Cloud Functions. https://cloud.google.com/functions.
[52] Google. 2020. Cloud Spanner. https://cloud.google.com/spanner.
[53] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring

and asserting distributed system invariants. In ICSE. 1149–1159.
[54] Brendan Gregg and Jim Mauro. 2011. DTrace: Dynamic Tracing in

Oracle Solaris, Mac OS X, and FreeBSD. Prentice Hall Professional.
[55] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan,

John Stasko, Jeffrey Vetter, and NirupamaMallavarupu. 1995. Falcon:
On-line monitoring and steering of large-scale parallel programs.
In Proceedings Frontiers’ 95. The Fifth Symposium on the Frontiers of
Massively Parallel Computation. IEEE, 422–429.

[56] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The
essence of JavaScript. In ECOOP. 126–150.

[57] Zhenyu Guo, XiWang, Jian Tang, Xuezheng Liu, Zhilei Xu, MingWu,
M. Frans Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level
Kernel for Record and Replay. InOSDI.

[58] Michel Hurfin, Masaaki Mizuno, Michel Raynal, and Mukesh Singhal.
1998. Efficient distributed detection of conjunctions of local predicates.
IEEE Transactions on Software Engineering 24, 8 (1998), 664–677.

[59] Michel Hurfin, Noël Plouzeau, and Michel Raynal. 1993. Debugging
tool for distributed Estelle programs. computer communications 16, 5
(1993), 328–333.

[60] Michel Hurfin, Noël Plouzeau, and Michel Raynal. 1993. Detecting
atomic sequences of predicates in distributed computations. In
Proceedings of the 1993 ACM/ONR workshop on Parallel and distributed
debugging. 32–42.

[61] Ecma International. 2015. ECMAScript 2015 Language Specification
(6th ed.). Geneva. http://www.ecma-international.org/ecma-
262/6.0/ECMA-262.pdf.

[62] Eric Jonas, Qifan Pu, ShivaramVenkataraman, Ion Stoica, and Benjamin
Recht. 2017. Occupy the cloud: Distributed computing for the 99%. In
Proceedings of the 2017 Symposium onCloud Computing. ACM, 445–451.

[63] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In SOSP.

[64] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
andWilliam G Griswold. 2001. An overview of AspectJ. In European
Conference on Object-Oriented Programming. Springer, 327–354.

[65] Ki-Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weather-
spoon. 2016. Globally Synchronized Time via Datacenter Networks.
Proceedings of the 2016 ACM SIGCOMMConference (2016).

[66] California State Legislature. 2019. California Consumer Privacy Act
of 2018 (Assembly Bill No. 375). https://leginfo.legislature.ca.gov/faces/
billTextClient.xhtml?bill_id=201720180AB375.

[67] Xuezheng Liu, Zhenyu Guo, XiWang, Feibo Chen, Xiaochen Lian, Jian
Tang, Ming Wu, M. Frans Kaashoek, and Zheng Zhang. 2008. D3S:
Debugging Deployed Distributed Systems. In NSDI.

[68] FriedemannMattern. 1988. Virtual time and global states of distributed
systems. In Proceedings of the International Workshop on Parallel and
Distributed Algorithms.

[69] James W Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot:
Deterministic Capture and Replay for JavaScript Applications.. InNSDI,

Vol. 10. 159–174.
[70] Microsoft. 2020. Azure API Management. https://azure.microsoft.com/

en-us/services/api-management/.
[71] Microsoft. 2020. Azure Blob Storage. https://azure.microsoft.com/en-

us/services/storage/blobs/.
[72] Microsoft. 2020. Azure Functions. https://azure.microsoft.com/en-

us/services/functions/.
[73] Microsoft Azure. 2020. Azure Functions scale and hosting. https:

//docs.microsoft.com/en-us/azure/azure-functions/functions-scale.
[74] Aloysius K Mok and Guangtian Liu. 1997. Efficient Run-Time

Monitoring of Timing Constraints.. In IEEE Real Time Technology and
Applications Symposium. 252–262.

[75] Menna Mostafa and Borzoo Bonakdarpour. 2015. Decentralized
runtime verification of LTL specifications in distributed systems. In
2015 IEEE International Parallel and Distributed Processing Symposium.
IEEE, 494–503.

[76] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured
Comparative Analysis of Systems Logs to Diagnose Performance
Problems. In NSDI.

[77] Node.js. 2019. Node.js v12.13.0 Documentation — Debugger.
https://nodejs.org/docs/latest-v12.x/api/debugger.html.

[78] Oleg Obleukhov. 2020. Building a more accurate time service at Face-
book scale. https://engineering.fb.com/production-engineering/ntp-
service/.

[79] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering record and replay for
deployability. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17). 377–389.

[80] OpenTracing. 2020. . https://opentracing.io/.
[81] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and

Rebecca Isaacs. 2020. Distributed Tracing in Practice: Instrumenting,
Analyzing, and Debugging Microservices. O’Reilly Media.

[82] Lin Quan, John Heidemann, and Yuri Pradkin. 2014. When the Internet
sleeps: Correlating diurnal networks with external factors. In IMC.

[83] Giles Reger, Helena Cuenca Cruz, and David Rydeheard. 2015. MarQ:
monitoring at runtime with QEA. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
596–610.

[84] Patrick Reynolds, Charles Edwin Killian, Janet L Wiener, Jeffrey C
Mogul, Mehul A Shah, and Amin Vahdat. 2006. Pip: Detecting the
Unexpected in Distributed Systems.. In NSDI, Vol. 6. 9–9.

[85] Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: a fully
integrated practical record/replay system. ACM Transactions on
Computer Systems (TOCS) 17, 2 (1999), 133–152.

[86] Yasushi Saito. 2005. Jockey: a user-space library for record-replay
debugging. In Proceedings of the sixth international symposium on
Automated analysis-driven debugging. ACM, 69–76.

[87] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan,
and Ethan Katz-Bassett. 2019. Internet Performance from Facebook’s
Edge. In IMC.

[88] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon
Gibbs. 2013. Jalangi: a selective record-replay and dynamic analysis
framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 488–498.

[89] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004.
Efficient decentralized monitoring of safety in distributed systems. In
Proceedings of the 26th International Conference on Software Engineering.
IEEE Computer Society, 418–427.

[90] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large

https://cloud.google.com/functions
https://cloud.google.com/spanner
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://nodejs.org/docs/latest-v12.x/api/debugger.html
https://engineering.fb.com/production-engineering/ntp-service/
https://engineering.fb.com/production-engineering/ntp-service/
https://opentracing.io/

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, andMooly Sagiv

Cloud Provider. InATC.
[91] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram

Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. 2018. numpywren: serverless linear algebra. arXiv preprint
arXiv:1810.09679 (2018).

[92] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a large-scale distributed systems tracing
infrastructure. (2010).

[93] Patrik Simek. 2019. vm2. https://github.com/patriksimek/vm2.
[94] Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J Franklin,

Michael I Jordan, and David A Patterson. 2011. The SCADS Director:
Scaling a Distributed Storage System Under Stringent Performance
Requirements.. In FAST, Vol. 11. 163–176.

[95] Jeffrey J. P. Tsai, K-Y Fang, H-Y Chen, and Y-D Bi. 1990. A noninterfer-
ence monitoring and replay mechanism for real-time software testing
and debugging. IEEE Transactions on Software Engineering 16, 8 (1990),
897–916.

[96] Zipkin. 2019. . https://zipkin.io/.

https://github.com/patriksimek/vm2
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless computing
	2.2 Program properties
	2.3 Monitoring Distributed Applications

	3 Design
	3.1 Structured events
	3.2 Property specification
	3.3 Event recording
	3.4 Event ingest
	3.5 Property checking
	3.6 Garbage collection
	3.7 Retroactive checking

	4 Debugging
	5 Implementation
	6 Case study
	6.1 Correctness properties for RealWorld
	6.2 Performance when monitoring RealWorld

	7 Detailed Evaluation
	7.1 Performance
	7.2 Scalability
	7.3 Effectiveness of the DPOR Optimization

	8 Related work
	9 Conclusion
	Acknowledgments
	References

