
Towards Operating System Support for Application-Specific
Fault-Tolerance Protocols

Leonid Ryzhyk, Ihor Kuz

National ICT Australia∗and University of New South Wales
Sydney, Australia

leonid.ryzhyk@nicta.com.au,ihor.kuz@nicta.com.au

Abstract

This paper proposes a new approach to operat-
ing system support for fault tolerance. We ar-
gue that in order to meet diverse application
fault-tolerance requirements, the operating system
should allow users to extend its functionality to
support application-specific fault-tolerance proto-
cols. We show that this kind of customisability can
be achieved by explicitly decomposing the operat-
ing system into policies and mechanisms residing
in different architectural layers and allowing appli-
cations to extend and modify these layers indepen-
dently.

1 Introduction

Existing operating systems and middleware are de-
signed on the assumption that the fault-tolerance
needs of most applications can be covered by a
small fixed set of fault-tolerance protocols. Sys-
tems built on this assumption provide inflexible
fault-tolerance support that cannot be easily cus-
tomised or extended. In particular, introduction of
a new protocol that has not been envisaged during
the design of the system is impossible without ex-
tensive changes to the core system structures and
algorithms.

In contrast, we claim that fault tolerance is by
nature application-specific— the choice of the
right protocol in every particular case is determined
by the structure and semantics of the application,
its non-functional requirements, the types of hard-

∗National ICT Australia is funded by the Australian Gov-
ernment’s Department of Communications, Information Tech-
nology, and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research
Centre of Excellence programs.

ware and software faults to be tolerated, and other
factors. This claim is confirmed by the diver-
sity of existing fault-tolerance protocols. Dozens
of variations of checkpointing [CL85], transac-
tions [BHG87], replication [FKL98], N-version
programming [Avi85], recovery blocks [Ran95],
software rejuvenation [KF95], and other tech-
niques have been created to meet the needs of spe-
cific types of applications.

There is clearly no way a single operating sys-
tem can implement all possible fault-tolerance pro-
tocols or even a reasonably large subset of those.
This suggests that fault-tolerance strategies should
be provided by applications themselves rather than
by the operating system. On the other hand, the ma-
jority of fault-tolerance protocols require modifica-
tions to various aspects of the basic operating sys-
tem functionality, including communication primi-
tives, memory allocation, storage, and synchronisa-
tion, and thus cannot be implemented without oper-
ating system support. Combining these two obser-
vations, we conclude that a fault-tolerance-aware
operating system should not directly implement
any fault-tolerance protocols, but should rather be
designed in an open way, which would allow users
to introduce application-specific protocols by mak-
ing the necessary changes to the operating system
internal functionality.

To illustrate this requirement, consider the ex-
ample of a cross-domain method invocation facil-
ity. The basic implementation of a method in-
vocation that does not support any form of fault
tolerance consists of marshalling invocation argu-
ments, sending the invocation request to the server
thread using blocking IPC, unmarshalling argu-
ments on the server side, invoking the target ob-
ject, preparing and sending the reply, and unmar-
shalling the returned value on the client side. Intro-

2 2 DESIGN SKETCH

duction of fault-tolerance protocols into the system
would require extending this sequence with addi-
tional steps. For instance, an object checkpoint-
ing protocol would involve logging and synchro-
nisation of invocations, while transaction support
would require appending a transaction ID to every
invocation, checking the membership of the target
object, and running a transaction concurrency con-
trol mechanism to acquire the necessary locks be-
fore performing the invocation. Other classes of
fault-tolerance protocols would enforce their own
changes to the communication mechanism.

In order to understand why existing operating
systems do not support this kind of extensibility
and what changes should be made to the operating
system architecture to enable it, it is useful to logi-
cally decompose the system intopoliciesandmech-
anisms. A mechanism defines a fragment of oper-
ating system functionality, while a policy defines
how mechanisms are combined and used to provide
a useful service to applications. For instance, some
of the mechanisms involved in the above exam-
ple include procedures for argument marshalling
and unmarshalling, data transfer using synchronous
IPC, message logging, and transaction concurrency
control. A policy in this case defines the order in
which these mechanisms are activated during the
method invocation.

From the point of view of the differentiation
between mechanisms and policies, most fault-
tolerance protocols can be decomposed into mech-
anisms that must be added to the system and mod-
ifications that must be made to existing policies in
order to make use of the new mechanisms. In the
above example, invocation logging and synchro-
nisation are mechanisms that must be provided to
support the checkpointing protocol, while the cor-
responding policy that must be modified is the ob-
ject invocation policy. While most existing operat-
ing systems can be easily extended with new mech-
anisms, there is usually no way to modify exist-
ing policies, because policy implementations are
inseparable from the mechanisms they control. In
our example, the cross-domain invocation policy
is hardwired into remote invocation stubs together
with all the associated mechanisms.

We believe that the lack of policy and mecha-
nism separation is the fundamental cause of inflex-
ible support for fault tolerance by existing operat-
ing system architectures. In the following section,
we present a new operating system architecture that

Microkernel

Policy layer

Functionality layer

(OS mechanisms, application components)

Figure 1: Architectural layers of the system.

clearly separates policies and mechanisms into dif-
ferent architectural layers and allows application
developers to introduce application-specific fault-
tolerance protocols by redefining system policies
on per-application basis.

2 Design sketch

The proposed operating system architecture con-
sists of three layers (see Figure 1). The bottom
layer is a small privileged microkernel providing
basic mechanisms for hardware resource manage-
ment and inter-process communication. The top
layer is thefunctionality layer, containing all op-
erating system mechanisms and application com-
ponents. In between them lies thepolicy layercon-
taining policies that control the structure and exe-
cution of the functionality layer. The policy layer
defines what mechanisms and components reside in
the functionality layer and how they connect to and
interact with each other.

2.1 The functionality layer

The functionality layer is populated by two types
of entities: operating system mechanisms and ap-
plication components. While they play different
roles in the system, they have the following com-
mon properties.

• Indivisibility. Functionality-layer entities
are fundamental operating system building
blocks. An entity can be added, replaced, or
removed from the system as a whole, but not
in parts. Therefore, different functions should
be grouped into a single entity only if they are
closely related to each other and are going to
be used together in all conceivable scenarios.

• Encapsulation. A functionality-layer entity
must provide well-defined functionality via a

3

well-defined access protocol. This property
forms the basis for construction of complex
operating system and application behaviours
by composition of functionality-layer entities.

• Policy freedom. Functionality-layer entities
must be free of policy decisions. A policy
decision defines how different operations are
combined together in a particular usage sce-
nario. In other words, it defines how the func-
tionality is used, as opposed to what it does.
For instance, the decision to invoke the mes-
sage transfer function right after marshalling
method arguments during a remote method in-
vocation is a policy decision — introduction
of a fault-tolerance protocol into the system
may require altering this decision in order to
insert additional operations, e.g., message log-
ging, in between these two operations. The
goal of the system designer is to break the
system functionality into policy-free units, so
that policy decisions only need to be involved
when crossing unit boundaries.

• Communication only with the policy layer.
Functionality-layer entities are not allowed to
communicate with each other directly. An en-
tity can be executed only when being acti-
vated by the policy layer and can communi-
cate with the rest of the world only by mak-
ing invocations to the policy layer. Hence,
the policy layer has complete control over the
execution of the functionality layer. In tra-
ditional operating system parlance, the pol-
icy layer provides an operating system API to
functionality-layer entities.

2.2 The policy layer

The policy layer consists of policies that define
how functionality-layer entities are combined to
provide more complex behaviours. Whenever a
functionality-layer entity tries to interact with the
outside world, e.g., to request an operating sys-
tem service or to communicate with other enti-
ties, it invokes the corresponding policy. The pol-
icy defines a sequence of invocations to operating
system mechanisms and/or application components
that must be performed in order to complete the re-
quested operation.

The internal structure of the policy layer is
object-oriented. Policies associated with a single
functionality-layer entity are grouped into apolicy

PolicyObject : PolicyClass

API

F

u

n

c
t

i
o

n

a

l
i
t

y

l
a

y
e

r

P

o

l
i
c

y

l
a

y
e

r

Application

component

Figure 2: An application component and the asso-
ciated policy object.

object. Methods of the policy object correspond to
individual policies. Every functionality-layer en-
tity, be it an application component or an operat-
ing system mechanism, is connected to a separate
policy-layer object (see Figure 2). This design al-
lows modifying policies associated with individual
entities without impacting other entities.

A policy object can communicate directly with
all other policy objects in the system and with the
functionality-layer entity connected to it, if there is
one, but not with entities associated with other pol-
icy objects. Therefore, policy objects have to coop-
erate in order to invoke each other’s functionality-
layer entities. In order to eliminate the context
switching overhead induced by the separation of
policies and mechanisms, a policy object and its
functionality-layer entity are always placed in the
same protection domain.

3 Example

This section illustrates, by example, how the pro-
posed architecture facilitates the use of application-
specific fault-tolerance protocols. Consider an im-
plementation of a hypothetical operating system
API supporting a simple message-passing object
model. Applications in this system are composed
of objects residing within protection domains.
Communication across protection domain bound-
aries is based on asynchronous message passing.
For the purpose of this example, we will focus on
a single aspect of the system — the implementa-
tion of the cross-domain message transfer facility.
The corresponding policy-layer classes and inter-
faces are shown in Figure 3.

We start with a basic implementation, which
does not support any form of fault tolerance. In
Figure 4, objectFoo sends a message to objectBar

4 4 CONCLUSION

+send()

«interface»

IObject

+deliver()

«interface»

IObjectInternal

+send()

+deliver()

PObject

+deliver()

«interface»

IProxy

+transfer()

«interface»

IProxyInternal

+deliver()

+transfer()

PProxy

+checkpoint()

+restore()

«interface»

ICheckpointable

+send()

+deliver()

+checkpoint()

+restore()

PFTObject

Figure 3: Policy-layer class diagram for the
message-passing object model.

Proxy
 Proxy
Foo
 Bar

Domain 1
 Domain 2

IPC

FooPolicy : PObject

IObject

BarPolicy : PObject

IObject

IObjectInternal

ProxyPolicy1 : PProxy

IProxy

IProxyInternal

ProxyPolicy2 : PProxy

IProxy

s
e

n

d

(
)

d
e

l
i
v

e

r
(

)

deliver()

F

u

n

c
t

i
o

n

a

l
i
t

y

l
a

y
e

r

P

o

l
i
c

y

l
a

y
e

r

transfer()

Figure 4: Cross-domain message transfer.

using thesend API provided by its policy object.
The communication is mediated by the message
proxy mechanism that transports data across pro-
tection domain boundaries using the IPC primitive
provided by the microkernel. The message trans-
fer involves four policy invocations: thesend pol-
icy of theFoo object, thetransfer policy of the
source message proxy, thedeliver policy of the
destination proxy, and, finally, thedeliver policy
of theBar object.

The PFTObject class extends this basic im-
plementation to support a simple checkpoint-
ing protocol based on pessimistic message log-
ging [BBG83]. The checkpointing protocol works
as follows. Before sending a message, an object
saves the contents of all the messages it received so
far into a stable storage. The contents of the log is
regularly replaced with a copy of the complete ob-
ject state. If one or more objects are destroyed as a
result of a software or hardware fault, they can be
restored by restoring the last checkpointed state of
the object and replaying all the messages received
after the checkpoint against it.

The PFTObject class redefines thesend and
deliver policies of thePObject class to per-
form message logging, as described above, and im-
plements theICheckpointable interface contain-
ing policies for checkpointing and restoring ob-

Proxy
 Proxy
Foo
 Bar

Domain 1
 Domain 2

FooPolicy : PFTObject

IObject

IObjectInternal

BarPolicy : PFTObject

IObject

IObjectInternal

 : PProxy
 : PProxy

s
e

n

d

(
)

d
e

l
i
v

e

r
(

)

deliver()

FS : PFileSystem

ICheckpointable
 ICheckpointable

write()

FS
 IPC

F

u

n

c
t

i
o

n

a

l
i
t

y

l
a

y
e

r

P

o

l
i
c

y

l
a

y
e

r

transfer()

IFileSystem

Figure 5: Fault-tolerant cross-domain message
transfer

ject state. Thecheckpoint policy writes the se-
rialised representation of the object to the persis-
tent store replacing the log of received messages,
while thedeliver policy restores the object from
the latest checkpoint and then plays the messages
from the log against it. Figure 5 shows the fault-
tolerance protocol at work. Like in the previous
case,Foo is sending a message toBar. However,
this time before transferring the message to the des-
tination, Foo’s policy object writes the content of
the volatile log to the non-volatile storage.

4 Conclusion

In this paper, we have argued that in order to meet
diverse application fault-tolerance requirements, an
operating system should allow users to extend its
functionality to support application-specific fault-
tolerance protocols. The paper has presented an op-
erating system architecture that achieves this kind
of extensibility by explicitly decomposing the sys-
tem into policies and mechanisms residing in dif-
ferent architectural layers and allowing applica-
tions to redefine policies they use. The main advan-
tages of the proposed architecture are as follows.

• It allows a wide range of fault-tolerance proto-
cols to be introduced into the system by mak-
ing relatively small incremental changes to the
policy layer.

• The effect of the changes is restricted to the
applications that use the given fault-tolerance
protocols, while other applications can use
different protocols or just continue relying on
the default policies.

• The changes required to implement fault-
tolerance protocols can be made in a well-
structure object-oriented manner, using inter-
faces, inheritance, and method overloading.

REFERENCES 5

References

[Avi85] Algirdas Avizienis. The n-version approach
to fault-tolerant software. IEEE Transac-
tions on Software Engineering, 11(12):1491–
1501, 1985.

[BBG83] Anita Borg, Jim Baumback, and Sam Glazer.
A message system supporting fault tolerance.
In Proceedings of the 9th ACM Symposium
on OS Principles, pages 110–118, October
1983.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman.Concurrency Control and
Recovery in Database Systems. Addison-
Wesley, 1987.

[CL85] K. Mani Chandy and Leslie Lamport. Dis-
tributed snapshots: Determining global states
of distributed systems.ACM Transactions on
Computer Systems, 3:63–75, 1985.

[FKL98] Alan Fekete, M. Frans Kaashoek, and Nancy
Lynch. Implementing sequentially consistent
shared objects using broadcast and point-to-
point communication.Journal of the ACM,
45(1):35–69, 1998.

[KF95] Nick Kolettis and N. Dudley Fulton. Soft-
ware rejuvenation: Analysis, module and ap-
plications. InProceedings of the 25th IEEE
International Symposium on Fault-Tolerant
Computing, page 381, 1995.

[Ran95] Brian Randell. The evolution of the recovery
block concept. In Lyu, editor,Software Fault
Tolerance, chapter 1, pages 1–21. 1995.

