Towards Operating System Support for Application-Specific
Fault-Tolerance Protocols

Leonid Ryzhyk, Ihor Kuz

National ICT Australiaand University of New South Wales
Sydney, Australia
leonid.ryzhyk@nicta.com.au,ihor.kuz@nicta.com.au

Abstract ware and software faults to be tolerated, and other
factors. This claim is confirmed by the diver-
This paper proposes a new approach to opergity of existing fault-tolerance protocols. Dozens
ing system support for fault tolerance. We abf variations of checkpointing [CL85], transac-
gue that in order to meet diverse applicatiofons [BHG87], replication [FKL98], N-version
fault-tolerance requirements, the operating systgfftbogramming [Avi85], recovery blocks [Ran95],
should allow users to extend its functionality tgoftware rejuvenation [KF95], and other tech-
support application-specific fault-tolerance proteriques have been created to meet the needs of spe-
cols. We show that this kind of customisability casific types of applications.
be achieved by explicitly decomposing the operat- There is clearly no way a single operating sys-
ing system into policies and mechanisms residifgy, can implement all possible fault-tolerance pro-
in different architectural layers and allowing applirgcols or even a reasonably large subset of those.
cations to extend and modify these layers indepefhjs suggests that fault-tolerance strategies should
dently. be provided by applications themselves rather than
by the operating system. On the other hand, the ma-
jority of fault-tolerance protocols require modifica-
tions to various aspects of the basic operating sys-

Existing operating systems and middleware are dgM functionality, including communication primi-
signed on the assumption that the fault-toleranf¥eS, memory allocation, storage, and synchronisa-

needs of most applications can be covered byli@n: and thus cannot be implemented without oper-
small fixed set of fault-tolerance protocols. Sy&ling system support. Combining these two obser-
tems built on this assumption provide inflexibl¥ations, we conclude that a fault-tolerance-aware

fault-tolerance support that cannot be easily cu¥Rerating system should not directly implement

tomised or extended. In particular, introduction &Y fault-tolerance protocols, but should rather be

a new protocol that has not been envisaged durifigsigned in an open way, which would allow users

the design of the system is impossible without e@ Introduce application-specific protocols by mak-
tensive changes to the core system structures 4}fthe necessary changes to the operating system
algorithms. internal functionality.

In contrast, we claim that fault tolerance is by To illustrate this requirement, consider the ex-
nature application-specific— the choice of the ample of a cross-domain method invocation facil-
right protocol in every particular case is determindty- The basic implementation of a method in-
by the structure and semantics of the applicatiorPcation that does not support any form of fault

its non-functional requirements, the types of haréplerance consists of marshalling invocation argu-
ments, sending the invocation request to the server
“National ICT Australia is funded by the Australian Govthread using blocking IPC, unmarshalling argu-

ernment’s Department of Communications, Information Tecpq . . .
nology, and the Arts and the Australian Research Counci ents on the server side, mVOkmg the target ob

through Backing Australia’s Ability and the ICT Research€Ct, preparing and sending the reply, and unmar-
Centre of Excellence programs. shalling the returned value on the client side. Intro-

1 Introduction

2 2 DESIGN SKETCH

duction of fault-tolerance protocols into the system
would require extending this sequence with addi- Functionality layer

tional steps. For instance, an object checkpoint{ (OS mechanisms, application components)
ing protocol would involve logging and synchro-

nisation of invocations, while transaction support
would require appending a transaction ID to every,
invocation, checking the membership of the targe.1
object, and running a transaction concurrency con-
trol mechanism to acquire the necessary locks be-
fore performing the invocation. Other classes of

fault-tolerance protocols would enforce their own

changes to the communication mechanism. clearly separates policies and mechanisms into dif-

In order to understand why existing operatin rent architecj[ural layers apd a}llows application
systems do not support this kind of extensibilitf€Velopers to introduce application-specific fault-
and what changes should be made to the operatififrance protocols by redefining system policies
system architecture to enable it, it is useful to log?" Per-application basis.

cally decompose the system ingoliciesandmech-

ar_lisms A mechanifsm d_efines a fragmgnt of opep Design sketch

ating system functionality, while a policy defines

how mechanisms are combined and used to prOViﬂQe proposed operating system architecture con-
a useful service to applications. For instance, somgts of three layers (see Figure 1). The bottom
of the mechanisms involved in the above exarrayer is a small priv”eged microkernel providing
ple include procedures for argument marshallingasic mechanisms for hardware resource manage-
and unmarshalling, data transfer using synchronayent and inter-process communication. The top
IPC, message logging, and transaction concurrengyer is thefunctionality layer containing all op-
control. A pOIlcy in this case defines the order i@rating system mechanisms and applica‘[ion com-
which these mechanisms are activated during thgnents. In between them lies thelicy layercon-
method invocation. taining policies that control the structure and exe-
From the point of view of the differentiationcution of the functionality layer. The policy layer
between mechanisms and policies, most fauttefines what mechanisms and components reside in
tolerance protocols can be decomposed into mede functionality layer and how they connect to and
anisms that must be added to the system and muderact with each other.
ifications that must be made to existing policies in
order to make use of the new mechanisms. In theg The functionality layer

above example, invocation logging and synchro- _ _ _
nisation are mechanisms that must be provided kg€ functionality layer is populated by two types

support the checkpointing protocol, while the coPf €ntities: operating system mechanisms and ap-
responding policy that must be modified is the ollication components. While they play different
ject invocation policy. While most existing operati0les in the system, they have the following com-
ing systems can be easily extended with new medR9N Properties.

anisms, there is usually no way to modify exist-
ing policies, because policy implementations are
inseparable from the mechanisms they control. In
our example, the cross-domain invocation policy
is hardwired into remote invocation stubs together
with all the associated mechanisms.

Policy layer

Microkernel |

Figure 1: Architectural layers of the system.

e Indivisibility. Functionality-layer entities
are fundamental operating system building
blocks. An entity can be added, replaced, or
removed from the system as a whole, but not
in parts. Therefore, different functions should
be grouped into a single entity only if they are
closely related to each other and are going to
be used together in all conceivable scenarios.

We believe that the lack of policy and mecha-
nism separation is the fundamental cause of inflex-
ible support for fault tolerance by existing operat-
ing system architectures. In the following section, ¢ Encapsulation. A functionality-layer entity
we present a new operating system architecture that must provide well-defined functionality via a

Functionality layer

well-defined access protocol. This property
forms the basis for construction of complex @:?
operating system and application behaviours
by composition of functionality-layer entities.
e Policy freedom. Functionality-layer entities .
must be free of policy decisions. A policy - Om_ihc —
decision defines how different operations are
combined together in a particular usage sce-
nario. In other words, it defines how the func-
tionality is used, as opposed to what it doekigure 2: An application component and the asso-
For instance, the decision to invoke the mesiated policy object.
sage transfer function right after marshalling
method arguments during a remote method i

Policy layer

o) g . : gbject Methods of the policy object correspond to
vocation is a policy decision - Intmduc'['orﬁndividual policies. Every functionality-layer en-

of a fault-_toleran(_:e prqtocol .ln_to the systernty’ be it an application component or an operat-
may require altering th_|s decision in order t g system mechanism, is connected to a separate
msert _addltlonal operations, e.g., message l9 licy-layer object (see Figure 2). This design al-
ging, in between these .tWO operanons. T ws modifying policies associated with individual
goal of the system designer is to break ﬂ‘le%tities without impacting other entities.

system functionality into policy-free units, so :
. - . A policy object can communicate directly with
that policy decisions only need to be involved : . . .
.) . all other policy objects in the system and with the
when crossing unit boundaries. :
functionality-layer entity connected to it, if there is
e Communication only with the policy layer. one, but not with entities associated with other pol-
Functionality-layer entities are not allowed técy objects. Therefore, policy objects have to coop-
communicate with each other directly. An ergrate in order to invoke each other’s functionality-
tity can be executed only when being actlayer entities. In order to eliminate the context
vated by the policy layer and can communBWwitching overhead induced by the separation of
cate with the rest of the world only by makpolicies and mechanisms, a policy object and its
ing invocations to the policy layer. Hencefunctionality-layer entity are always placed in the
the policy layer has complete control over theame protection domain.
execution of the functionality layer. In tra-
ditional operating system parlance, the pol-
icy layer provides an operating system APIt§ EXample

functionality-layer entities.) o
This section illustrates, by example, how the pro-

posed architecture facilitates the use of application-
specific fault-tolerance protocols. Consider an im-
The policy layer consists of policies that definplementation of a hypothetical operating system
how functionality-layer entities are combined té&Pl supporting a simple message-passing object
provide more complex behaviours. Whenevermodel. Applications in this system are composed
functionality-layer entity tries to interact with theof objects residing within protection domains.
outside world, e.g., to request an operating sySemmunication across protection domain bound-
tem service or to communicate with other entaries is based on asynchronous message passing.
ties, it invokes the corresponding policy. The poFor the purpose of this example, we will focus on
icy defines a sequence of invocations to operatiagsingle aspect of the system — the implementa-
system mechanisms and/or application componefitg of the cross-domain message transfer facility.
that must be performed in order to complete the réhe corresponding policy-layer classes and inter-
quested operation. faces are shown in Figure 3.

The internal structure of the policy layer is We start with a basic implementation, which
object-oriented. Policies associated with a singlimes not support any form of fault tolerance. In
functionality-layer entity are grouped intopmlicy Figure 4, objecFoo sends a message to objgetr

2.2 Thepoalicy layer

4 4 CONCLUSION
«nterface» <interface» \ch«mie"ace»bl <interface» «interface»
10bject IObjectinternal eckpointable IProxy IProxyInternal 5
+send() +deliver() ifg;g:sg‘"‘o +deliver() +ransfer() H
PObject PProxy é
t+send() +deliver() _
+deliver() +transfer() %
§
PFTObject
[+send()
+deliver()
+checkpoint() . .
sestore(Figure 5. Fault-tolerant cross-domain message
transfer
Figure 3: Policy-layer class diagram for the

message-passing object model. ject state. Theheckpoint policy writes the se-

rialised representation of the object to the persis-
tent store replacing the log of received messages,
while thedeliver policy restores the object from
the latest checkpoint and then plays the messages
from the log against it. Figure 5 shows the fault-
tolerance protocol at work. Like in the previous
caseFoo is sending a message Bar. However,

this time before transferring the message to the des-
tination, Foo’s policy object writes the content of

Domain 1 Domain 2

Proxy IIE> Proxy

Foo

Bar

Functionality layer

send()
deliver()

10bject IProxy IProxy I0bject

Policy layer

[FooPalicy : PObjec} [ProxyPolicyl : PProxy | [ProxyPolicy2 : PProxy [BarPolicy : PObject

l transfer() l deliver(

IProxylnternal I0bjectinternal

using thesend API provided by its policy object. 4 ~Conclusion
The communication is mediated by the message)
proxy mechanism that transports data across pEB—th's paper, we have argued that in order to meet
tection domain boundaries using the IPC primitivéverse application fault-tolerance requirements, an
provided by the microkernel. The message trarfperating system should allow users to extend its

fer involves four policy invocations: theend pol-
icy of the Foo object, thetransfer policy of the
source message proxy, tdeliver policy of the

functionality to support application-specific fault-
tolerance protocols. The paper has presented an op-
erating system architecture that achieves this kind

destination proxy, and, finally, thieliver policy
of theBar object.

The PFTObject class extends this basic im-.
plementation to support a simple checkpoin
ing protocol based on pessimistic message lo
ging [BBG83]. The checkpointing protocol works
as follows. Before sending a message, an object'
saves the contents of all the messages it received so
far into a stable storage. The contents of the log is
regularly replaced with a copy of the complete ob-
ject state. If one or more objects are destroyed as g§
result of a software or hardware fault, they can be
restored by restoring the last checkpointed state of
the object and replaying all the messages received
after the checkpoint against it.

The PFTObject class redefines theend and
deliver policies of thePObject class to per- ®
form message logging, as described above, and im-
plements th@&Checkpointable interface contain-
ing policies for checkpointing and restoring ob-

fions to redefine policies they use. The main advan
t&ges of the proposed architecture are as follows.

of extensibility by explicitly decomposing the sys-
tem into policies and mechanisms residing in dif-
ferent architectural layers and allowing applica-

It allows a wide range of fault-tolerance proto-
cols to be introduced into the system by mak-
ing relatively small incremental changes to the
policy layer.

The effect of the changes is restricted to the
applications that use the given fault-tolerance
protocols, while other applications can use
different protocols or just continue relying on
the default policies.

The changes required to implement fault-
tolerance protocols can be made in a well-
structure object-oriented manner, using inter-
faces, inheritance, and method overloading.

REFERENCES

References

[Avi85]

[BBG83]

[BHG87]

[CL85]

[FKLO8]

[KF95]

[Ran95]

Algirdas Avizienis. The n-version approach
to fault-tolerant software. IEEE Transac-
tions on Software Engineering1(12):1491—
1501, 1985.

Anita Borg, Jim Baumback, and Sam Glazer.
A message system supporting fault tolerance.
In Proceedings of the 9th ACM Symposium
on OS Principles pages 110-118, October
1983.

Philip A. Bernstein, Vassos Hadzilacos, and
Nathan GoodmarConcurrency Control and
Recovery in Database Systemsddison-
Wesley, 1987.

K. Mani Chandy and Leslie Lamport. Dis-
tributed snapshots: Determining global states
of distributed systemsACM Transactions on
Computer System8:63-75, 1985.

Alan Fekete, M. Frans Kaashoek, and Nancy
Lynch. Implementing sequentially consistent
shared objects using broadcast and point-to-
point communication.Journal of the ACM
45(1):35-69, 1998.

Nick Kolettis and N. Dudley Fulton. Soft-
ware rejuvenation: Analysis, module and ap-
plications. InProceedings of the 25th IEEE
International Symposium on Fault-Tolerant
Computingpage 381, 1995.

Brian Randell. The evolution of the recovery
block concept. In Lyu, editoSoftware Fault
Tolerance chapter 1, pages 1-21. 1995.

