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Abstract

Faulty device drivers are a major source of operating sys-
tem failures. We argue that the underlying cause of many
driver faults is the separation of two highly-related tasks:
device verification and driver development. These two
tasks have a lot in common, and result in software that
is conceptually and functionally similar, yet kept totally
separate. The result is a particularly bad case of duplica-
tion of effort: the verification code is correct, but is dis-
carded after the device has been manufactured; the driver
code is inferior, but used in actual device operation. We
claim that the two tasks, and the software they produce,
can and should be unified, and this will result in dras-
tic improvement of device-driver quality and reduction
in the development cost and time to market.

In this paper we discuss technical issues involved in
achieving such unification and present our solutions to
these issues. We report the results of a case study that
applies this approach to implement a driver for an Ether-
net controller device.

1 Introduction

Device drivers are critical components of an operating
system (OS), as they are the software that controls pe-
ripheral hardware, such as disks, network interfaces or
graphics displays. They make up a large fraction of OS
code, e.g., around 70 % in Linux.

Drivers are also important for another reason: they are
the leading reliability hazard in modern OSs. Drivers
are known to be responsible for the majority of OS fail-
ures [4], and have been shown to have 3–7 times the de-
fect density of other OS code [3].

We have previously shown that the leading class
of driver defects, comprising about 40 % of all driver
bugs, are related to incorrect handling of the hardware-
software interface [11]. These bugs include incorrect use
of device registers, sending commands to the device in

the wrong order, or incorrectly interpreting device re-
sponses.

Analysis of many open source drivers [11] suggests
that these defects can often be attributed to a discon-
nect between the developers of the hardware (device) and
software (driver). The interface between these develop-
ers consists of a document called thedevice datasheet,
which describes device registers and behaviour from the
software perspective. The datasheet is created by the
hardware engineers, and typically represents the only de-
scription of the device available to the software engi-
neers. In practice, datasheets are often incomplete and
inaccurate, which results in numerous driver defects.

Another source of driver defects results from the diffi-
culty of testing a driver as part of an OS. While the driver
can issue arbitrary commands to the device, it only has
partial control over its physical environment, including
the I/O bus and the external medium that the device is
connected to. This makes it difficult to achieve a good
coverage of the state space of the driver. For example, it
is difficult to test how the driver handles situations such
as internal device FIFO overflow due to bus contention or
packet transmission failure due to multiple network col-
lisions. As a result, most drivers are only well tested in
common scenarios and do not adequately handle various
corner cases.

We argue that the underlying cause of these difficul-
ties is the separation of two highly-related tasks:device
verification(performed by the hardware verification en-
gineer) anddriver development(the job of the software
engineer). As explained in more detail in the next sec-
tion, these two tasks have a lot in common, and result
in software that is conceptually and functionally similar,
yet kept totally separate. The result is a particularly bad
case of useless duplication of effort: the verification code
is correct, but is discarded after the device has been man-
ufactured; the driver code is inferior, but used in actual
device operation.

Our central claim is that the two tasks, and the soft-
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Figure 1: The conventional testbench and OS I/O stack
architecture.

ware they produce, can and should be unified, and this
will result in drastic improvement of device-driver qual-
ity. To support this claim, we have developed a workflow
in which most of the driver code is developed and tested
in the context of the device verification environment and
is transferred without modifications to the OS environ-
ment. The workflow guarantees that code that works cor-
rectly in the verification environment results in a correct
driver.

The rest of the paper is structured as follows. We start
with an overview of the traditional hardware and driver
development workflow in Section 2. Section 3 presents
the proposed improved workflow. Section 4 reports on
the results of a case study that applies this workflow to
implement a driver for an Ethernet controller. We sur-
vey related work in Section 5 and draw conclusions in
Section 6.

2 Traditional Development Process

In current industrial practice, design and testing of a
device are tightly integrated. Starting from a natural-
language description of the desired device functional-
ity, the hardware engineer develops a register transfer
level (RTL) model. As mistakes are expensive and time-
consuming to fix once the design has been synthesised in
silicon, much effort is put into verifying the design in a
simulated environment prior to producing hardware.

Testbench Verification uses atestbench, which is a
program designed to exercise the design and validate its
behaviour under a wide range of operating conditions.
Most modern testbenches follow the layered architecture
shown in Figure 1 (a), which models the hardware and
software structure of a real computer system. It is built
around a simulated model of the device, called thedesign
under test(DUT). The DUT is connected to abus func-
tional model(BFM), which simulates the I/O bus the de-
vice is connected to. It accepts bus-read and -write com-

mands from higher layers and translates them into bus
transactions at the device interface. Theagentmodule
consists of functions and associated state that implement
high-level device transactions such as sending network
packets, changing device configuration, handling inter-
rupts, etc.

Thescenariolayer consists of test scenarios designed
to thoroughly test the device in various modes. These
scenarios can be directed or randomised. A directed sce-
nario consists of a fixed sequence of commands, whereas
a randomised scenario generates random command se-
quences subject to a set of constraints.

Finally, the bottom layer of the testbench simulates the
physical medium that the device controls. For instance,
if the DUT is an Ethernet MAC controller, this layer sim-
ulates an Ethernet physical transceiver (PHY) chip.

In addition to the above components, a complete
testbench contains other modules, including monitors,
scoreboards, and coverage points that check whether the
device behaves correctly during tests and whether the
tests have covered the entire device functionality.

Driver A device driver is usually developed by an indi-
vidual or a team separate from the design and verification
engineers who design the device and its testbench.

Figure 1(b) shows a device driver in the context of the
operating system I/O stack. The latter consists of the
hardware device connected to the physical medium, the
I/O bus transport comprised of the physical I/O bus and
the OS bus framework, and the device driver providing
services to the rest of the OS.

Figure 1 illustrates that there is a lot of commonal-
ity between the agent component of the testbench and
the driver produced by the software team. Both convert
high-level requests into interactions with the device. Yet,
the driver is developed in a much less supportive envi-
ronment.

Firstly, verification engineers have complete access
to all device specifications and design internals and the
possess expertise to understand these specifications. As
such, they are in a good position to implement device
control logic correctly. In contrast, driver developers
only have access to the (frequently incorrect) datasheet.

Secondly, the device control logic can be tested in the
context of the device testbench more exhaustively than
in the context of a driver. The testbench is specifically
designed to expose various corner cases in the device be-
haviour. It has complete control over all components of
the simulated environment and can model unusual situ-
ations like bus contention, network collisions, etc. As
a side effect, such testing also exposes defects in other
testbench components, including the agent, since such
defects are likely to cause failures in verification scenar-
ios.

2



3 Testbench Reuse

Given the conceptual similarity between testbench and
driver code, it seems promising to reuse the former for
developing the latter. However, achieving this in practice
faces significant challenges.

While the agent and the device driver serve a similar
purpose in their respective environments, the exact in-
terface they implement can be different. Adapting the
agent implementation to the driver interface enforced by
a particular OS may involve significant refactoring, e.g.,
splitting one operation into several or adding calls to OS-
specific services. In addition, it requires writing device-
specific glue code to translate OS requests into calls to
agent functions. The need for these time-consuming
and error-prone steps compromises the purpose of code
reuse.

3.1 Overview of Approach

Instead of trying to adapt existing testbench code to work
in the OS environment, we propose an approach where
the testbench and the driver aredesigned to sharecom-
mon device management code. To this end, we unify the
interfaces between the device management code and its
environment, be it a testbench or an OS. A correct imple-
mentation of these interfaces is guaranteed to work cor-
rectly in both environments. We call such a reusable im-
plementation anenvironment-independent device driver.

The resulting testbench and OS architectures are
shown in Figure 2. In both environments, the device is
managed by the environment-independent device driver,
which interacts with the environment via two standard-
ised interfaces: the generic device-class interface shared
by all similar devices (e.g. all Ethernet controllers or
all SCSI adapters) and the bus interface that provides
generic methods for access to a specific bus type (PCI,
USB, etc). The environment-independent driver is de-
veloped and tested in the context of the testbench and is
reused without modifications inside the OS.

In the testbench environment, the environment-
independent driver interacts directly with the scenario
layer and the BFM, which are designed to be compat-
ible with the generic device-class and bus interfaces.
In the OS environment, additional wrappers are re-
quired to translate between OS-specific driver interfaces
and the corresponding generic interfaces. These wrap-
pers only need to be implemented once for each OS
and each generic interface. This way the environment-
independent driver can be reused not only between the
testbench and the OS environment but also across differ-
ent OSs.

One complication involved in sharing the
environment-independent driver implementation
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Figure 2: The testbench and OS architecture us-
ing a common implementation of the environment-
independent device driver.

between the testbench and the driver is that testbenches
are written in hardware description and verification lan-
guages (HDVLs) such as SystemC and SystemVerilog,
whereas OS kernels can only host code written in C or
C++. One possible solution is to automatically translate
the environment-independent driver from HDVL to C.
Alternatively, an environment-independent driver can be
written in C and incorporated into a HDVL testbench
using inter-language bindings. We aim to support both
approaches.

3.2 Device-class contracts

Interface compatibility is not sufficient to ensure that an
environment-independent driver developed in the test-
bench environment will work correctly in the OS envi-
ronment. In particular, some of the implicit assumptions
about the environment incorporated in the driver code
may not hold inside the OS. The OS may perform var-
ious operations in a different order than the testbench,
or issue concurrent calls to operations that the testbench
executes sequentially. As a result, the driver based on
this code may contain defects even though the code was
thoroughly tested in the testbench environment.

In order to avoid such defects we associate a detailed
behavioural contract with each interface, which defines
constraints on the ordering of driver requests and re-
sponses as well as operations that the device must com-
plete to satisfy each request. A correct driver must han-
dle any sequence of requests permitted by the contract.
Any valid environment must use the driver in a way that
satisfies all constraints of the contract.

The device-class contract is specified by OS experts,
who have a good understanding of how device drivers
interact with the OS, in collaboration with hardware ver-
ification engineers, who are responsible for incorporat-
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ing the contract specification in the device testbench, as
explained below.

The following is a simplified example of a rule defined
by the Ethernet controller device-class contract:

When the controller is enabled, the client can
call the packet transmission method of the
driver. The driver must transmit packets re-
ceived from the client over the network in
FIFO order. Once a packet has been transmit-
ted, the driver must notify the client by invok-
ing the packet completion callback.

In order to facilitate the testing of environment-
independent drivers for contract compliance, we formu-
late the contract as an imperative program that can be
incorporated in the device testbench as one of the test-
ing scenarios. This program represents the most general
contract-compliant environment that is capable of issu-
ing all legal sequences of driver requests. It generates
random requests to the driver according to the constraints
of the contract and checks the driver behaviour for adher-
ence to the contract.

Contract-based testing has important advantages com-
pared to conventional driver testing. First, by randomly
generating sequences of driver requests, it achieves a
high degree of program coverage. Second, being in-
tegrated in the testbench, the contract can monitor not
only driver responses but also device outputs and inter-
nal hardware signals. This allows it to check that requests
sent to the driver result in correct device behaviours.

Of course, even such thorough testing does not guar-
antee correctness, since complete test coverage cannot be
achieved in practice. However, it enables much higher
degree of confidence than conventional driver testing.

Figure 3 illustrates how monitoring of hardware inter-
faces can enhance the quality of driver testing. It shows
an example testbench for an Ethernet MAC controller de-
vice that uses the device-class contract as its testing sce-
nario. Arrows represent events involved in checking the
packet transmission rule specified above.

The contract module generates a random Ethernet
packet and issues asend request to the driver. It saves a
copy of the packet in its internal queue (not shown in the
figure). When the driver successfully sends the packet, it
appears at the PHY interface of the device and is received
by the Ethernet PHY module. The PHY module notifies
the scenario layer about the packet via thetx frame
callback. At this point, the scenario module compares
the packet received by the PHY layer against the packet
in its internal queue, to make sure that the packet data has
not been corrupted, and marks the packet as transmitted.
Eventually, the driver issues asend complete noti-
fication to the contract module, which checks that the
notification is not premature, i.e., the first frame in the
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Figure 3: Ethernet controller testbench set up to test
the environment-independent driver for contract compli-
ance.

transmit queue is marked as completed, and removes the
frame from the queue.

Device-class interfaces and contracts are subject to
extension. Many devices support non-standard features
that might not be covered by the existing interface. In
such cases, a custom version of the interface and the as-
sociated contract must be produced for the device. In
addition, the OS wrappers also need to be modified to
support the new behaviours. Such modifications will be
strictly incremental in most cases, since non-standard de-
vices are usually compatible with all features of the stan-
dard ones. This incremental approach does not work for
highly specialised devices that that cannot be attributed
to an existing device class. Such devices require design-
ing the device-class interface, device-class contract, and
OS wrappers from scratch.

3.3 Discussion

The proposed methodology relies on hardware verifica-
tion engineers to build their testbenches around generic
driver interfaces. We believe that this is a practical ap-
proach for the following reasons. First, driver reliability
is an increasingly important concern for hardware ven-
dors, especially in the embedded space where short prod-
uct development cycles put extra pressure on engineers to
produce reliable drivers within a short time frame. Our
approach allows implementing and testing driver code
even before the device has been implemented in silicon,
thus cutting down the development cost and time to mar-
ket.

Second, while introducing only minor changes to the
verification workflow, the proposed methodology im-
proves the quality of hardware verification. By testing
the environment-independentdevice driver for adherence
to the contract, we simultaneously test the device under
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a wide range of scenarios that model how the device will
be used in a real OS. The effectiveness of this approach
has been demonstrated in the case study presented in
Section 4, where we found a number of design errors in
the device which had slipped through conventional veri-
fication.

4 Case Study

We applied the proposed methodology to the OpenCores
Ethernet MAC 10/100Mbps controller [10] whose RTL
description is publicly available. We defined the Eth-
ernet controller device-class contract and implemented
an environment-independent device driver that adheres
to this contract, and constructed a testbench similar to
the one shown in Figure 3. All components of the test-
bench, including the contract and the driver, are written
in SystemVerilog.

We implemented the OS wrappers (Figure 1 (d)) for
Linux. As we do not yet have a compiler from Sys-
temVerilog to C, we perform this translation manually.
This translation is still in progress at the time of writing,
so we cannot yet test the driver in the target OS.

Nevertheless, initial experience has been encouraging.
The contract-driven testbench not only found bugs in the
environment-independent driver, but actually found de-
fects in the DUT which the original testbench failed to
expose.

Interestingly, we found that one of the defects detected
in the environment-independent driver is also present in
the existing Linux driver for the device. The defect was
caused by an undocumented device behaviour, and man-
ifested itself when the driver disabled the device and im-
mediately deallocated all associated DMA buffers. Its
cause was that the device, when disabled, it did not stop
its transmit and receive engines until any transfer in pro-
cess was complete. The defect was identified by the
contract module when it received a transmit notification
from the PHY module after the driver had reported that
the transmitter had been disabled. This example illus-
trates how the effectiveness of driver testing is improved
by performing such testing in the testbench environment.

The hardware-design defects we found resulted from
situations which occur in a real OS, but which the origi-
nal testbench failed to model. These include a hardware
race condition that occurred when the device was dis-
abled with its receive ring not empty and later reenabled,
which resulted in lost and corrupted packets.

Both examples illustrate the disconnect between hard-
ware and software engineers: software engineers often
do not understand device internals enough to provide ad-
equate software support for the device, and hardware en-
gineers are not sufficiently familiar with the use patterns
that the device must handle under OS control.

An encouraging observation is that the testbench pro-
vides a much better debugging environment for drivers
than real hardware. Driver developers are only too fa-
miliar with the frustrating situation where a device sim-
ply refuses to behave as expected, a situation which fre-
quently requires a trial-and-error approach to resolve. It
is a consequence of the inability to inspect the internal
state of the device. In the testbench environment, the
programmer has complete access to the source code and
the runtime state of the simulated device, which helps
tremendously in diagnosing difficult problems.

Since our Linux driver is still incomplete, we have not
been able to measure its performance. Results of the per-
formance evaluation will be available for the final version
of the paper.

5 Related Work

Previous research on device driver reliability has mainly
focused on detecting [1], isolating [8], and avoiding [11]
generic programming errors and errors in the interface
between the driver and the OS. Few researchers have
looked at errors related to interaction with the device.
Kadav et al. [5] proposed an automatic code transforma-
tion tool that improves the handling of device errors in
the driver. Tools like Devil [9] and Termite [12] gener-
ate a partial or complete implementation of a driver from
a formal specification of the device interface. The main
limitation of this approach is the availability of a correct
specification.

Recently, Kuznetsov et al. [7] proposed a symbolic
execution technique for improving the test coverage of
device drivers. Their approach allows detecting generic
programming errors, concurrrency errors and, poten-
tially, OS protocol violations; however it is not effec-
tive against device protocol violations, which is the most
common type of driver defects. We believe that our tech-
niques are complementary: by using symbolic execution
rather than randomisation to steer drive testing in the test-
bench environment, it is possible to achieve better preci-
sion in detecting device protocol violations.

Bombieri et al. [2] propose a method for generating a
device driver from an existing device testbench by con-
verting the testbench to a state machine representation
and manually identifying sequences of commands that
correspond to driver operations. One problem with this
approach is that the required manual step is error-prone.
More importantly, as discussed in Section 3, testbench
code that is not designed for reuse in the OS environ-
ment is unlikely to be reusable without substantial mod-
ification.

The hardware/software co-simulation technique [6]
used for early prototyping and debugging uses the same
driver implementation in verification and production en-
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vironments. However, this approach is not compatible
with current verification practices based on HDVL test-
benches. In addition, the resulting driver is tied to a sin-
gle software environment and cannot be reused across
different OSs.

6 Conclusions and Future Work

We argue that the lack of cooperation between hardware
and software designers is a major source of driver relia-
bility problems and propose an architectural framework
to enable such cooperation. This framework allows most
of the driver code to be developed and tested at the hard-
ware verification stage, before the device is implemented
in silicon.

The benefits are:

• significant improvement of driver reliability, since
the driver is identical to the code used to debug the
hardware, and is more thoroughly exercised than
feasible in an OS environment;

• reduced cost of driver development, as the driver is
an almost-free by-product of device verification;

• driver portability, as it is developed in an OS-
agnostic fashion.

Ongoing research focuses on applying this approach
to a representative selection of I/O devices, demonstrat-
ing the reusability of environment-independent device
drivers across different OSs, and performance analysis
of the resulting drivers.
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C. Gray, L. Macpherson, D. Potts, Y. R. Shen,
K. Elphinstone, and G. Heiser. User-level device
drivers: Achieved performance.Journal of Com-
puter Science and Technology, 20(5):654–664, Sep
2005.
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