
Automatic Device Driver Synthesis with Termite

Leonid Ryzhyk∗† Peter Chubb∗† Ihor Kuz∗† Etienne Le Sueur∗† Gernot Heiser∗†‡
∗NICTA∗ †The University of New South Wales ‡Open Kernel Labs

Sydney, Australia
leonid.ryzhyk@nicta.com.au

ABSTRACT
Faulty device drivers cause significant damage through down time
and data loss. The problem can be mitigated by an improved driver
development process that guarantees correctness by construction.
We achieve this by synthesising drivers automatically from formal
specifications of device interfaces, thus reducing the impact of hu-
man error on driver reliability and potentially cutting down on de-
velopment costs.

We present a concrete driver synthesis approach and tool called
Termite. We discuss the methodology, the technical and practical
limitations of driver synthesis, and provide an evaluation of non-
trivial drivers for Linux, generated using our tool. We show that the
performance of the generated drivers is on par with the equivalent
manually developed drivers. Furthermore, we demonstrate that de-
vice specifications can be reused across different operating systems
by generating a driver for FreeBSD from the same specification as
used for Linux.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Input/Output; B.4.2 [Input/Output
and Data Communications]: Input/Output Devices

General Terms
Languages, Reliability, Verification

Keywords
Device Drivers, Software Synthesis, Domain-Specific Languages,
Two-Player Games.

1. INTRODUCTION
Faulty device drivers are a major source of operating system

failures, causing significant damage through downtime and data
loss [10,24]. A number of static [1,3,8] and runtime [9,12,15,16,

∗NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

To appear in the 22nd ACM Symposium on Principles of OperatingSystems
(SOSP), October 2009, Big Sky, MT, USA

24, 28] techniques have been proposed to detect and isolate driver
faults. These techniques, however, suffer from serious limitations.
Existing static analysis tools are capable of detecting a limited sub-
set of errors, such as common OS API rule violations [1] and cer-
tain memory allocation and synchronisation errors [8]. Stronger
correctness properties, such as memory safety, race-freedom, and
correct use of device interfaces, are currently beyond the reach of
these tools. Runtime isolation architectures are capable of detect-
ing broader classes of errors, but do so at the cost of introducing a
CPU overhead in the order of 100% [4,9,24].

An alternative to fault detection and isolation is an improved
driver development process that guarantees correctness by con-
struction. One way to achieve this is to synthesise device drivers
automatically from a device specification, thus reducing the impact
of human error on driver reliability and potentially cutting down
on development costs. We have implemented a tool called Termite
that does exactly that. Termite combines two formal specifications:
one describing the device’s registers and behaviour, and one de-
scribing the interface between the driver and the OS, to synthesise
a complete driver implementation in C. With Termite, the problem
of writing a correct driver is reduced to one of obtaining or devel-
oping correct specifications.

Separating device description from OS-related details is a key
aspect of our approach. It allows the people with the most appro-
priate skills and knowledge to develop specifications: device inter-
face specifications can be developed by device manufacturers, and
OS interface specifications by the OS developers who have intimate
knowledge of the OS and the driver support it provides.

In a hand-written device driver, interactions with the device and
with the OS are intermingled, leading to drivers that are harder to
write and harder to maintain. Termite specifications each deal with
a single concern, and thus can be simpler to understand and debug
than a full-blown driver.

Device interface specifications are independent of any OS, so
drivers for different OSes can be synthesised from a single specifi-
cation developed by a device manufacturer, thus avoiding penaliz-
ing less popular OSes with poor-quality drivers. A further benefit of
device and OS separation is that any change in the OS need only be
expressed in the OS-interface specification in order to re-generate
all drivers for that OS. This is particularly interesting for Linux,
which frequently changes its device driver interfaces from release
to release.

Generating code from formal specifications reduces the inci-
dence of programming errors in drivers. Assuming that the syn-
thesis tool is correct, synthesised code will be free of many types
of programming errors, including memory management and syn-
chronisation bugs, missing return value checks, etc. A bug in a
driver can occur only as a result of an error in the specification.

1

The likelihood of errors due to incorrect OS interface specifica-
tions is reduced because these specifications are shared by many
drivers and are therefore subject to extensive testing. Errors in de-
vice specifications can be reduced by using model checking tech-
niques to establish formal correspondence between the actual de-
vice behaviour, as defined in its register-transfer-level description,
and the Termite specification. However, this capability is not yet
supported in Termite.

While the above discussion is concerned with the technical im-
plications of automatic driver synthesis, the real-world success of
this approach depends on device manufacturers and OS developers
adopting it.

For device manufacturers, our approach has the potential to re-
duce driver development effort while increasing driver quality. Fur-
thermore, once developed, a driver specification will allow drivers
to be synthesised for any supported OS, thus increasing the OS sup-
port for the device.

For OS developers, the quality and reputation of their OS de-
pends greatly on the quality of its device drivers: major OS ven-
dors suffer serious financial and image damage because of faulty
drivers [10]. Driver quality can be improved by providing and en-
couraging the use of tools for automatic driver synthesis as part
of driver development toolkits. Since Termite drivers can co-exist
with conventional hand-written drivers, migration to automatically-
generated drivers can be implemented gradually.

Another concern for OS developers is that acceptance and suc-
cess of their OS depends largely on compatibility with a wide range
of devices. Since device interface specifications are OS indepen-
dent, providing support for driver synthesis allows the reuse of all
existing Termite device interface specifications, leading to potential
increases in an operating system’s base of compatible devices.

In this paper we make the following contributions. First, we
present an approach to driver synthesis based on separate speci-
fications of device and OS interfaces. Second, we define a formal
language for specifying such interfaces. Third, we describe an al-
gorithm based on game theory to generate drivers from the speci-
fications. Finally, we evaluate the proposed approach based on our
experience synthesising Linux and FreeBSD drivers for two real
devices: a Secure Digital (SD) card host controller, and a USB-to-
Ethernet adapter.

The rest of this paper is structured as follows. We start with
a high-level overview of the synthesis methodology in Section 2.
Section 3 describes the specification language of Termite, while
Section 4 presents a sample driver specification illustrating how
real device and OS interfaces are defined in this language. Sec-
tion 5 outlines our driver synthesis algorithm, followed by a qual-
itative and quantitative evaluation of the Termite approach and the
resulting drivers in Section 6. Section 7 discusses the limitations
of the current Termite implementation. Finally, we survey related
work in Section 8 and draw conclusions in Section 9.

2. OVERVIEW OF DRIVER SYNTHESIS
Termite generates an implementation of a driver based on a for-

mal specification of its device and OS interfaces. The device inter-
face specification describes the programming model of the device,
including its software-visible states and behaviours. The OS in-
terface specification defines services that the driver must provide
to the rest of the system, as well as OS services available to the
driver. Given these specifications, Termite produces a driver imple-
mentation that translates any valid sequence of OS requests into a
sequence of device commands.

This is similar to the task accomplished by a driver developer
when writing the driver by hand. In contrast to automatic driver

synthesis, however, manual development relies on informal de-
vice and OS documentation rather than on formal specifications:
The device interface description is found in the device data sheet,
whereas the OS interface is documented in the driver developer’s
manual and in the form of comments in the OS source code.

In Termite, the device and the OS interfaces are specified in-
dependently and are comprised of different kinds of objects: the
device interface consists of hardware registers and interrupt lines,
whereas the OS interface is a collection of software entrypoints and
callbacks. How can Termite establish a mapping between the two
interfaces, while keeping them independent?

Our solution is inspired by conventional driver development
practices. Consider, for example, the task of writing a Linux driver
for the RTL8139D Ethernet controller. Linux requires all Ether-
net drivers to implement thehard_start_xmit entrypoint de-
scribed in the Linux driver developer’s manual [6]:

int (*hard_start_xmit) (...);
Method that initiates thetransmission of a packet.

In order to implement this function, the driver developer consults
with the RTL8139D device data sheet [19], which describes the
transmit operation of the controller as follows:

Setting bit 13 of the TSD register triggers thetrans-
mission of a packet, whose address is contained in the
TSAD register and whose size is given by bits 0-12 of
the TSD register.

While the two documents were written independently by differ-
ent authors, both of them refer to the act ofpacket transmission,
which is the common behaviour of all Ethernet controller devices
and is independent of the specific device architecture and OS per-
sonality. It allows the driver developer to relate the two specifica-
tions and to correctly implement thehard_start_xmit func-
tion by setting the appropriate device registers.

To generalise this example, both the device and the OS specifica-
tions refer to actions performed by the device in the external phys-
ical world, e.g., transmission of a network packet, writing a block
of data to the disk, or drawing a pixel on the screen. The device
specification uses these actions to describe how the device reacts to
various software commands. Likewise, the OS specification men-
tions external device actions when describing the semantics of OS
requests.

Together, the set of such external actions characterises a class of
similar devices, such as Ethernet controllers or SCSI disks, and is
both device and OS-independent. In Termite, these actions are for-
malised in a separate device-class specification, which is provided
to the synthesis tool along with the device and OS specifications.

Figure 1 shows a high-level view of the synthesis process. The
following subsections elaborate on each of the three specifications
involved in driver synthesis.

2.1 Device-class specifications
An informal description of a device class can usually be found in

the relevant I/O protocol standard. For example, the Ethernet LAN
standard, maintained by the IEEE 802.3 working group [13], de-
scribes common behaviours of Ethernet controller devices, includ-
ing packet transmission and reception, link status detection, speed
autonegotiation, etc. Other I/O protocol standards include SCSI,
USB, AC’97, IEEE 1394, SD, etc.

In Termite, device-class functionality is formalised as a set of
events. The Ethernet controller device class, for example, includes
such events as packet transmission, completion of autonegotiation,
and link status change.

2

specification

Device−class

Device

OS

Termite

Device driver

.c

specification

specification

Figure 1: Driver synthesis with Termite. Solid arrows indicate in-
puts and outputs of the synthesis tool; dashed arrows indicate ref-
erences from the device and OS specifications to the device-class
specification.

Since device-class specifications must be agreed upon by all de-
vice vendors, we envisage that it can be maintained by the appro-
priate regulatory body as part of the corresponding I/O protocol
standard.

In practice, many I/O devices are not 100% standards compli-
ant. For example, some devices support non-standard configura-
tion parameters accessible to applications viaioctl() or similar
mechanisms. If such a configuration parameter is shared by several
devices, it can be included in the standard device-class specification
as an optional feature that need not be supported by all implemen-
tations. In case this feature is unique to the device, the device man-
ufacturer has to develop an extended version of the device-class
specification describing the given feature. The extension must be
strictly incremental, so that it can be combined with an existing OS
interface specification that is not aware of the new function. The
device manufacturer must also develop an extended OS interface
specification in order to enable access to this function in a specific
OS.

2.2 Device specifications
The device specification models the software view of the device

behaviour. It describes device registers accessible to the driver and
device reactions to writing or reading of the registers. A device’s re-
action depends on its current register values and state, e.g., whether
the device has been initialised, is busy handling another request,
etc. The device reaction may include actions such as updating reg-
ister values, generating interrupts, and performing one or more ex-
ternal actions defined in the device-class specification.

A device specification can be constructed in several ways. First,
it can be derived from informal device documentation. Hardware
vendors often release detailed data sheets, describing the interface
and operation of the device. Such a data sheet is intended to provide
sufficient information to enable a third party to develop a driver for
the device.

Figure 2 shows a specification of the transmit command of the
RTL8139D device derived from its data sheet (for now, we write the
specification in English, rather than in the formal Termite language,
which will be introduced in Section 3). Here, steps 1, 3, and 4 rep-
resent actions of the device interface, whereas the packet transfer
performed in step 2 is a device-class event. The latter cannot be
observed directly by the software, but can be controlled indirectly.
Specifically, the driver can initiate packet transfer by setting bit 13
of the TSD register and is notified of the transfer completion by an
interrupt and a flag in the status register.

The problem with this approach to obtaining device specifica-
tions is that informal device documentation seldom undergoes ad-
equate quality assurance. As a result, it tends to be incomplete and
inaccurate. A specification derived from such a data sheet is likely

1. The TSD register is updated by the software.

2. If bit 13 of the TSD register changed from 0 to 1, the device
performs a packet transfer. The physical address and size of the
packet are determined by TSD and TSAD registers.

3. The device sets a flag in the interrupt status register to signal
successful completion of the transfer.

4. An interrupt signal is generated.

Figure 2: Specification of the transmit operation of the RTL8139D
controller derived from its data sheet.

To transmit a network packet:

1. Write the packet address to the TSAD register;

2. Write the TSD register, storing the packet size in bits 0 to 12 to
and setting bit 13 to 1;

3. Wait for an interrupt from the controller;

4. Read the interrupt status register to make sure that the transfer
was successful;

5. Packet transfer complete.

Figure 3: Specification of the transmit operation of the RTL8139D
controller derived from a reference driver implementation.

to reproduce these defects, in addition to extra ones introduced in
the process of formalisation.

Another approach to the construction of a device specification
is to distil it from an existing driver implementation provided by
the device vendor or a third party. The source code of the driver
defines sequences of commands that must be issued to the driver
in order to perform a specific operation. A Termite specification of
the device is obtained by separating these device control sequences
from OS-specific details.

Figure 3 shows a specification of the RTL8139D transmit opera-
tion extracted from the source code of the Linux driver for this de-
vice. While this specification is equivalent to the one in Figure 2, it
is substantially different in style. The specification obtained from
the data sheet describes how the device reacts to software com-
mands in different states, but does not explicitly define the order
in which these commands should be issued to achieve a particular
goal. This order is established automatically by the synthesis algo-
rithm. In contrast, the specification derived from the existing driver
source code specifies an explicit command sequence. The Termite
synthesis tool, described in this paper, can handle both types of
specifications.

The main drawback of this approach to constructing device spec-
ifications is that it relies on someone to develop at least one driver
for the device manually and thus contradicts our vision of eventu-
ally replacing manual driver development with automatic synthesis.
Besides, similarly to informal documentation, a device driver may
contain errors, which are carried over to the resulting specification.
However, the likelihood of such errors in a well-tested driver is
much lower.

The third way to construct a device specification is to derive
it from the register-transfer-level (RTL) description of the device
written in a hardware description language (HDL). This requires
abstracting away most of the internal logic and modelling only in-
terface modules, responsible for interaction with the host CPU. In
principle, such abstraction can be computed automatically, thus fur-
ther reducing the effort required to create a device driver. At the
moment, however, support for automatic abstraction has not been
implemented, therefore it must be performed manually.

Since the RTL description is used as the source for generating
the actual device circuit, it constitutes an accurate and complete

3

1. The OS sends ahard_start_xmit request to the driver;

2. Eventually, the device completes the transfer of the packet,
passed as an argument tohard_start_xmit;

3. The driver calls thedev_kfree_skb_any function to notify
the OS of the packet completion.

Figure 4: A fragment of the Ethernet controller driver interface
specification.

model of the device operation. Therefore, this method of obtain-
ing device specifications is the preferred one. Furthermore, since
the RTL description has well-defined formal semantics, one could
potentially use model checking techniques to verify that the result-
ing Termite specification constitutes a faithful abstraction of the
device behaviour, thus eliminating errors introduced during man-
ual abstraction. We have not implemented support for such model
checking yet.

The main limitation of this approach to obtaining device speci-
fications is that it requires access to the RTL description of the de-
vice, which is usually part of the device manufacturer’s intellectual
property. Therefore, the device manufacturer is in the best position
to produce device specifications.

2.3 OS specifications
The OS interface specification defines OS requests that must be

handled by the driver, the ordering in which these request can occur
and how the driver should respond to each type of request. To this
end, it defines a state machine, where each transition corresponds
to a driver invocation by the OS, an OS callback made by the driver,
or a device-class event. Any of these operations is only allowed to
happen if it triggers a valid state transition in the state machine.

The OS interface state machine describes the semantics of OS re-
quests in terms of their external effect, i.e. in terms of device-class
events that must be generated in response to the request. Consider,
for example, the fragment of the interface between the Linux ker-
nel and an Ethernet driver specified in Figure 4. This specification
states that the driver must respond to thehard_start_xmit re-
quest by completing the transfer of the network packet specified in
the request. The transfer of a packet is a device-class event. The
exact mechanism of generating this event is described in the device
specification; the OS specification simply states that the event must
occur for thehard_start_xmit request to be satisfied.

The specification in Figure 4 imposes both safety and liveness
constraints on the driver. Safety ensures that the driver does not vi-
olate the prescribed ordering of operations, e.g., it is only allowed
to send a packet after receiving an appropriate request. Liveness
forces certain events to eventually happen, thus guaranteeing for-
ward progress. In this example, after receiving the transmit request,
the driver must eventually transfer the packet.

A typical driver interacts with the OS through several
interfaces—one for each service provided or used by the driver. In
particular, every driver implements at least one interface, through
which the OS accesses the device functionality. Most devices are
connected to the host CPU via an I/O bus, such as PCI or USB.
Drivers for such devices use the bus transport service provided by
the OS to access the device. In addition, the driver may use generic
OS services, such as timers and memory allocators.

Termite allows each OS interface to be defined independently, in
a separate specification. Multiple interfaces can then be combined
in a driver declaration given to Termite.

2.4 The synthesis process
The goal of the Termite synthesis algorithm is to generate a

driver implementation that complies with all relevant interface

specifications. Such an implementation must satisfy the following
requirements:

1. Safety. The driver must not violate the specified ordering
of operations. If the driver issues a device command which
raises a device-class event, this event must be enabled in the
OS interface specification in the current state, i.e. the driver
should only perform external actions when allowed by the
OS interface. Likewise, every OS callback performed by the
driver must trigger a transition in the OS interface state ma-
chine.

2. Liveness. The driver must be able to meet all its goals:
whenever the OS interface state machine is in a state where
an event or one of a group of events is required to eventu-
ally happen, the driver must guarantee the occurrence of this
event within a finite number of steps.

This can be formalised as a two-player game between the driver
and its environment comprised of the device and the OS. The play-
ers participate in the game by exchanging commands and responses
across driver interfaces. Each player directly controls a subset of
interactions: the OS controls requests sent to the driver, the driver
controls commands sent to the device and OS callbacks, and the de-
vice controls responses to software commands. Rules of the game
define legal sequences of interactions between the players and are
given by the device and OS interface specifications (safety). The
driver’s game objective is to complete any OS request in a finite
number of steps (liveness).

The Termite synthesis algorithm computes a winning strategy
on behalf of the driver. A winning strategy must guarantee that the
driver will achieve its objectives, regardless of how the device and
the OS behave, as long as their behaviour remains within rules. The
formulation of the problem as a game enables us to employ existing
game-theoretic techniques in computing the driver strategy. Details
of the Termite synthesis algorithm are presented in Section 5.

The resulting strategy constitutes a state machine, where in ev-
ery state the driver either performs an action, e.g., writes a device
register or invokes an OS callback, or waits for an input from the
environment, e.g., a completion interrupt from the device, or a call
from the OS. This state machine is translated into C code, which
can be compiled and loaded in the OS kernel just like a conven-
tional, manually developed driver.

3. THE TERMITE SPECIFICATION LAN-
GUAGE

This section presents the Termite specification language used to
develop driver interface specifications that can be processed by the
Termite synthesis tools. An example of a driver specification writ-
ten in this language is presented in Section 4.

3.1 Requirements
The Termite specification language must be suitable for mod-

elling the behaviour of complex I/O devices, containing multiple
functional units. Such systems cannot be feasibly described by ex-
plicitly enumerating its states. A high-level language, providing
constructs to express hierarchical composition of communicating
state machines, is required.

The language should also provide flexible data definition and
manipulation facilities. Examples of data in Termite specifications
include device registers, DMA buffers, and operating system I/O
request descriptors.

Some existing languages satisfy these requirements. In particu-
lar, hardware description languages are well-suited for describing

4

Name Syntax Semantics Description

Termination exit
exit

Successful termination

Message prefixing a; P P
a

A process that performs action a and then behaves as process P

Choice a1; P1 [] a2; P2
P2

a1 a2

P1

A process that performs either a1 or a2 and then behaves as P1 or
P2 respectively

Conditional if[cond]P1[]else P2

false
cond

P1 P2

true

A process that behaves as P1 if cond holds or as P2 otherwise

Sequencing P1 >> P2
exit

P1 P2 Start process P2 after P1 terminates

Preemption P1 [> P2 P1 P2
a

Execution of P1 is interrupted when the first action of P2 occurs

Parallel composition P1[|a1...an|]P2
anP1 P2

a1 P1&P2 run concurrently, synchronising on actions a1..an, i.e., one
of these actions can only occur when it triggers a state transition
in both processes

Interleaving P1|||P2 P1 P2 P1&P2 run concurrently; actions can arbitrarily interleave

Table 1: Termite control structures. Circles denote individual states. Squares denote entire state machines, aka processes. A circle with a dot
denotes a final state.

device behaviour, and are sufficiently general to model arbitrary
state-machine-based systems. At the moment, however, Termite
does not provide an HDL frontend. The present version only ac-
cepts specifications written in our own domain-specific language,
presented below.

The design of the Termite specification language was inspired by
the LOTOS process calculus [14] and our earlier work on the Tingu
software protocol specification language [20].

3.2 Messages, interfaces, and components
In the Termite language, all interactions between the driver, the

device, and the OS, including reading and writing device registers,
interrupt notifications, OS requests and callbacks, are modelled as
messages. There are three types of messages: inbound messages
sent by the device or the OS to the driver, outbound messages sent
by the driver, and internal messages that model device-class events
and do not represent any directly observable interactions. A mes-
sage can carry data defined by its arguments.

Messages are grouped into interfaces. A Termite interface corre-
sponds to the informal notion of an interface used in the previous
sections. Device and OS vendors define an interface for every de-
vice and for every OS service used or implemented by the driver.
In addition, device-class events are grouped in a separate interface.

Data associated with the interface is modelled using variables,
for example, to represent device register values.

The behaviour associated with the device or OS interface is mod-
elled as a state machine whose transitions are triggered by occur-
rences of interface messages or device-class events. The latter pos-
sibility allows the specification of relative orderings of device or
OS messages and device-class events. When a transition is taken,
it may update the values of interface variables.

An interface declaration consists of several sections. Thetypes
section declares data types used by the interface. The Termite type
system currently supports booleans, arbitrarily sized integers, enu-
merations, and structures. Themessages section declares in-
bound, outbound, and internal messages associated with the inter-
face. Thevariables section declares variables associated with
the interface. Thetransitions section describes the state ma-
chine of the interface.

The top-level entity in the Termite language is the component,
which describes a device driver to be synthesised by listing its in-

terfaces. It is provided as the main input to the Termite synthesis
tool.

3.3 Interface state machines
An interface state machine consists of messages combined into

processes. A simple process is a sequence of messages named after
its initial state. For example, the following process allows messages
m1 andm2 to occur before returning to the initial state.

process FOO
m1; m2; FOO

endproc

More complex processes are composed out of simple ones using
sequential and parallel composition operators listed in Table 1.

An individual message occurrence in a process has the following
syntax:

<message_name>[<guard>]/<action>:timed

with optional <guard>, <action> and timed components.
Here,guard is a boolean expression over interface variables and
message arguments, which defines conditions under which the tran-
sition is enabled. Theaction specifies how interface variables are
updated when the transition is taken. Thetimed keyword is used
to specify liveness requirements of the interface: when the state
machine is in a state with one or more enabled timed transitions,
one of these transitions must eventually be taken. If the timed tran-
sition corresponds to an outbound or internal message, then it is the
responsibility of the driver to generate this message; otherwise, the
other side of the interface (the device or the OS) guarantees that it
will deliver the message to the driver.

The following specification fragment illustrates the use of the
above syntax:

bar[$arg==m_var]/m_var=0

It describes an occurrence of thebar message with thearg ar-
gument equal to the value of them_var interface variable (“$”
denotes a message argument in the Termite language). When the
transition is taken, the value of the variable is changed to 0.

The Termite specification language supports two special types of
transition. Anawait transition is triggered when its guard expres-
sion evaluates to truth. Atimeout transition is triggered after the
amount of time specified by its argument. It can be used to model
time-dependent device and OS behaviours.

5

4. EXAMPLE
In this section, we illustrate the various concepts introduced in

the previous sections using a complete Termite specification of a
driver for a Secure Digital (SD) host controller device. This device
was chosen since it is simple enough to explain in the limited space
available, yet represents a real device allowing us to show what
Termite specifications for real hardware look like.

4.1 Overview
An SD host controller acts as a bridge between the host CPU

and an SD card device connected to the SD bus (Figure 5). The
SD bus architecture is host-centric with the host controller issuing
commands on the bus and the SD card executing the commands
and sending responses back to the host controller.

For this example we have targeted an open-source SD host con-
troller implementation published by the OpenCores project [7].
The device interface specification presented here has been manu-
ally derived from the register-transfer level Verilog HDL design of
the controller.

The top-level driver declaration is shown in Figure 6. It describes
the driver by listing the interface specifications that the driver must
implement. These include the SD host controller device class spec-
ification, the SD host controller driver OS interface specification,
and the specification of the OpenCores SD host controller device
interface. The following subsections consider each of these inter-
faces in detail.

In order to keep the example concise, we have chosen not to
model all of the device and OS features. In particular, in mod-
elling the device and the SD bus behaviour we specify simplified
SD command and response formats and abstract away the SD error
recovery, power management, and hot plugging protocols. Like-
wise, we define a simplified OS interface, which is loosely based
on the analogous interface in Linux, but does not support advanced
configuration options and multiple-block data transfers. Further-
more, we assume that the host CPU can read and write device reg-
isters directly, so the driver does not need to use a bus transport
service to access the device.

Note that results for synthesising drivers from unabridged device
specifications are presented in Section 6.

4.2 The device-class specification
As mentioned in Section 2, a device-class specification must cap-

ture common external behaviour of a family of similar devices. For
SD host controller devices, the common behaviour is defined in the
SD bus specification [21], maintained by the SD Association.

According to this specification, the controller operates by issuing
SD commands, consisting of a 6-bit command index and a 32-bit
argument, on the bus. Upon completion of the command, the card
sends back a 32-bit response. Two commands involve an additional
data transfer stage that follows the response: the block read com-
mand is followed by the transfer of a 512-byte block from the card;
the block write command is followed by the transfer of a 512-byte
block to the card. The argument of both commands is the block
address in the card memory.

The controller also manages several bus configuration parame-
ters, of which we model just one—the bus clock frequency. The

Local bus

CPU
controller

SD bus

SD host SD
card

Figure 5: SD host controller device.

1 component sdhc_opencores
2 {
3 SDHostClass class;
4 SDHostOS os;
5 SDHostOpenCores dev;
6 };

Figure 6: The SD host controller driver component specification.

1 interface SDHostClass
2 {
3 types:
4 /*SD error conditions*/
5 enum sdh_status_t {
6 SDH_SUCCESS = 0, /* success */
7 SDH_ECRC = 1, /* CRC error */
8 SDH_ETIMEOUT = 2 /* timeout */
9 };

10 /*SD command attributes*/
11 struct sdh_cmd_t {
12 unsigned<6> index; /*cmd index*/
13 unsigned<32> arg; /*argument*/
14 bool data; /*command with data?*/
15 bool response; /*response expected?*/
16 };
17messages:
18 /*Device initialized*/
19 internal on();
20 /*Device inactive*/
21 internal off();
22 /*Successful completion of a command stage*/
23 internal commandOK(
24 sdh_cmd_t command,
25 unsigned<32> response);
26 /*Command stage failed*/
27 internal commandError(
28 sdh_cmd_t command,
29 sdh_status_t status);
30 /*Successful completion of a data stage*/
31 internal blockTransferOK(
32 paddr_t mem_addr, //host address of the block
33 unsigned<32> card_addr); //card address
34 /*Data transfer failed*/
35 internal blockTransferError(
36 paddr_t mem_addr,
37 unsigned<32> card_addr,
38 sdh_status_t status);
39 /*Bus frequency changed*/
40 internal busClockChange(u32 divisor);
41};

Figure 7: The SD host controller device-class specification.

frequency can be modified by applying a divisor to the basic clock.
Figure 7 shows the specification of the SD host controller device

class. It is defined as an interface with only internal messages (cor-
responding to device-class events). The first two events (lines 19
and 21) are generated when the device is turned on and ready for
use and when it is inactive respectively. The remaining events de-
scribe command and data transfers and bus frequency change oper-
ations outlined above.

Since the device class only defines the set of events shared be-
tween the OS and the device specifications and does not impose
constraints on the ordering of these events, a device-class specifi-
cation does not define a state machine.

4.3 The OS interface specification
The OS interface specification (Figure 8) describes the service

that an SD host controller driver must provide to the OS. OS re-

6

1 interface SDHostOS
2 {
3 types:
4 struct sdhc_request_t {
5 unsigned<32> opcode; /*cmd index*/
6 unsigned<32> arg; /*cmd argument*/
7 bool response; /*response present*/
8 bool data_present; /*data stage present*/
9 paddr_t block; /*block address*/

10 };
11 struct sdhc_response_t{
12 int<32> cmd_status; /*cmd stage status*/
13 unsigned<32> response;/*response from card*/
14 int<32> data_status; /*data stage status*/
15 };
16

17messages:
18 /*Probe and initialise the controller*/
19 in probe ();
20 out probeComplete (int<32> status);
21

22 /*Shut down the device and terminate the driver*/
23 in remove ();
24 out removeComplete ();
25

26 /*Issue a command on the bus, followed by a data
27 transfer stage (if the command involves one)*/
28 in request (sdhc_request_t request);
29 out requestComplete (sdhc_response_t response);
30

31 /*Change the bus clock frequency*/
32 in setClock (unsigned<32> divisor);
33 out setClockComplete ();
34

35variables:
36 unsigned<32> m_reqDiv;/*requested divisor*/
37 sdhc_request_t m_request;
38 sdhc_response_t m_response;
39

40transitions:
41 probe;
42 class.on:timed;
43 probeComplete[$status==0]:timed;
44 REQUESTS
45

46 where
47

48 process REQUESTS
49 /*A remove request*/
50 remove;
51 /*The driver must switch the device off
52 before sending the completion message*/
53 class.off:timed;
54 removeComplete:timed;
55 /*The interface state machine terminates*/
56 exit
57 []
58 /*A setClock request*/
59 setClock/m_reqDiv=$divisor;
60 /*The driver must change the bus clock divisor
61 to the requested value before sending the
62 completion message*/
63 class.busClockChange[$divisor==m_reqDiv]:timed;
64 setClockComplete:timed;
65 REQUESTS
66 []

67 /*Command without a data transfer stage*/
68 request[$request.data_present==false]
69 /m_request=$request;
70 (
71 class.commandOK
72 [($command.index==m_request.opcode)&&
73 ($command.arg==m_request.arg)&&
74 ($command.response==m_request.response)&&
75 ($command.data==false)]
76 /{m_response.cmd_status=0;
77 m_response.response=$response;}:timed;
78 requestComplete[$response==m_response]:timed;
79 REQUESTS
80 []
81 class.commandError
82 /{m_response.cmd_status=$status;
83 m_response.response=0;}:timed;
84 requestComplete[$response==m_response]:timed;
85 REQUESTS
86)

87 []
88 /*Command 17 (block read request) and command 24
89 (block write request) are handled similarly*/
90 request[($request.data_present==true)&&
91 (($request.opcode==17)||
92 ($request.opcode==24))]
93 /m_request=$request;
94 (
95 /*Command stage completes successfully*/
96 class.commandOK
97 [($command.index==m_request.opcode)&&
98 ($command.arg==m_request.arg)&&
99 ($command.response==m_request.response)&&

100 ($command.data==true)]
101 /{m_response.cmd_status=0;
102 m_response.response=$response;}:timed;
103 (
104 /*Data transfer stage completes successfully*/
105 class.blockTransferOK
106 [$mem_addr==m_request.block]
107 /m_response.data_status=0 : timed;
108 requestComplete[$response==m_response]:timed;
109 REQUESTS
110 []
111 /*Data transfer fails*/
112 class.blockTransferError
113 /m_response.data_status=$status;
114 requestComplete[$response==m_response]:timed;
115 REQUESTS
116)
117 []
118 /*Command stage fails*/
119 class.commandError
120 /{m_response.cmd_status=$status;
121 m_response.response=0;
122 m_response.data_status=0;};
123 requestComplete[$response==m_response]:timed;
124 REQUESTS
125)
126 endproc
127};

Figure 8: The SD host controller driver OS interface specification.

7

Command Master

RESET

DIVISOR

Registers

ARGUMENT

STATUS

ISR
EISR

COMMAND

RESPONSE

BDRX
BDTX

BD

Host
iface SD bus

S
D

 b
us

 in
te

rf
ac

e
lo

gi
c

Clock Divider

Data Master
DISR
BDSTATUS

Figure 9: The OpenCores SD host controller device architecture.

quests are modelled as inbound messages; driver responses are
modelled as outbound messages, as defined in lines 17–33.

The main part of the specification is the interface state machine,
which defines the driver’s required reactions to requests in terms
of device-class events that must occur before the driver sends a
completion notification to the OS. This pattern is illustrated, for
instance, in lines 41–43, which specify how the driver must han-
dle aprobe request from the OS. Before replying to this request
in line 43, the driver must ensure that theclass.on message in
line 42 occurs. This message refers to theon event defined in the
device-class specification (Section 4.2). In other words, the precon-
dition for sending theprobeCompletemessage to the OS is that
the device is successfully initialised. Note that the state machine
does not describe how this precondition is satisfied. This informa-
tion is part of the device specification, considered below.

After completing the initialisation, the interface state machine
executes theREQUESTS process (line 48). In its initial state, this
process performs a choice between incoming requests defined in
lines 50, 59, 68, and 90 using the[] operator (lines 57, 66, and
87). This means that the driver must wait for one of these messages
from the OS.

We consider one of the four requests in detail in order to illus-
trate the use of interface variables and transition guards in OS spec-
ifications. Line 67 describes a request to issue an SD command
without a data transfer stage. The request structure is copied to
them_request variable. The state machine defines two possible
outcomes of this request: either the device successfully completes
the command (line 71) or the command completes with an error
(line 81). The guard in lines 72–75 states that the command trans-
ferred on the bus must correspond to the one requested by the OS.
In case of success, the response received from the SD card is saved
in the m_response variable (line 77) and sent to the OS in a
requestCompletemessage (line 78). If the command fails, the
driver stores the error code in them_response variable (line 82)
and reports the failure to the OS via arequestComplete mes-
sage (line 84).

Handling of the other requests is explained using comments in
Figure 8. Note that for a command with a data stage the driver
must also wait for the data transfer to complete before signalling
success.

4.4 The device interface specification
While the OS interface specification determines the structure of

the driver by defining requests that it must handle in every state, the
device interface specification reflects the structure and operation of
the device hardware.

Figure 9 shows the internal architecture of the device in question,
as defined in its HDL specification and Table 2 describes its regis-

Register: ARGUMENT (Command arg) Size: 32 Access: RW
[31:0] CMDA Command argument value

Register: COMMAND (Command) Size: 16 Access: RW
[15:10] CMDI Command index
[9:2] RESERVED Reserved
[1:0] RTS Response type

00: No response
01: Response

Register: STATUS (Card status) Size: 16 Access: R
[15:1] RESERVED Reserved
0 CICMD Command inhibit

Register: RESPONSE (Command response)Size: 32 Access: R
[31:0] CRSP Response from the card

Register: RESET (Software reset) Size: 8 Access: RW
[31:0] RESERVED Reserved
0 SRST Software reset

Register: ISR (Normal intr status) Size: 16 Access: RW
15 EI Error interrupt
[14:1] RESERVED Reserved
0 CC Command complete

Register: EISR (Error intr status) Size: 16 Access: RW
[31:2] RESERVED Reserved
1 CCRC CRC error
0 CTE Command timeout

Register: DIVISOR (Clock divisor) Size: 8 Access: RW
[7:0] CLKD Clock divisor

Register: BDSTATUS (Buffer descr status)Size: 16 Access: R
[15:8] FBRX Free RX descriptors
[7:0] FBTX Free TX descriptors

Register: DISR (Data intr status) Size: 16 Access: RW
[15:2] RESERVED Reserved
1 TRE Transmission error
0 TRS Transmission successful

Register: BDRX (RX buffer descriptor) Size: 32 Access: W
[31:0] BDRX

Register: BDTX (TX buffer descriptor) Size: 32 Access: W
[31:0] BDTX

Table 2: SD host controller registers.

ters. The device supports the bus mastering capability and uses
DMA to transfer data blocks to and from the host memory. It is
connected to an interrupt line, which is used to signal the comple-
tion of command and data stages to the driver.

The interface logic of the controller consists of the register file,
the Command Master module responsible for issuing commands
without a data stage, the Data Master module, which handles block
transfer commands, the BD module, which buffers block descrip-
tors before passing them to the Data Master, and the Clock Divider
module, which controls the SD bus clock.

The Termite specification of the device is shown in Figure 10.
Ellipses are used throughout the specification to indicate omission
of code fragments; the complete specification consists of 468 lines
of code.

The types section describes the structure of device registers (only
the command register is shown) and the data structure used to rep-
resent block descriptors inside the device (line 11). The messages
section declares messages exchanged between the driver and the
device. These include register read and write messages (lines 18–
20) and the interrupt message (line 21). Theout specifier of the
message argument in line 19 indicates that the value of this argu-
ment is returned by the message.

Interface variables (lines 23–30) describe internal device reg-
isters and signals that influence the device’s software-observable
behavior. TheXXX_reg variables model device register content.
Them_new_command variable models the internal signal that no-

8

1 interface SDHostOpenCores
2 {
3 types:
4 /* device registers */
5 struct command_reg {
6 unsigned<2> RTS;
7 unsigned<8> RESERVED;
8 unsigned<6> CMDI;
9 };

10 ...
11 struct block_descr {
12 unsigned<32> mem_addr; /*memory address*/
13 unsigned<32> card_addr; /*card address*/
14 };
15

16messages:
17 /*register read/write messages */
18 out write_command_reg (command_reg v);
19 out read_command_reg (out command_reg v);
20 ...
21 in irq ();
22

23variables:
24 command_reg m_command_reg;
25 ...
26 unsigned<1> m_new_command;
27 unsigned<1> m_data_command;
28 sdhost_command_t m_command;
29 block_descr m_tx_descr;
30 block_descr m_rx_descr;
31

32transitions:
33 write_reset_reg[$v.SRST==1]
34 /{m_comand_reg=0;
35 m_status_reg=0; ...};
36 write_reset_reg[$v.SRST==0];
37 class.on;
38 SDHOST
39

40 where
41

42 process SDHOST
43 (
44 REGISTERS
45 |||
46 (COMMAND_MASTER |[class.off]| DATA_MASTER)
47 |||
48 CLOCK_DIVIDER
49)
50 [>
51 write_reset_reg[$v.SRST == 1]
52 /{m_comand_reg=0;
53 m_status_reg=0; ...};
54 write_reset_reg[$v.SRST==0];
55 SDHOST
56 endproc
57

58 process CLOCK_DIVIDER
59 write_clock_div_reg/m_clock_div_reg=$v;
60 class.busClockChange

61 [$divisor==m_clock_div_reg.CLKD];
62 CLOCK_DIVIDER
63 endproc
64

65 process REGISTERS
66 read_argument_reg[$v==m_argument_reg];
67 REGISTERS
68 []
69 write_argument_reg[m_status_reg.CICMD==1]
70 /m_argument_reg=$v;
71 REGISTERS
72 []
73 write_argument_reg[m_status_reg.CICMD==0]
74 /{m_argument_reg=$v;
75 m_new_command=1;
76 m_data_command=0;
77 m_status_reg.CICMD=1;};
78 REGISTERS
79 []
80 ...
81 endproc
82

83 process COMMAND_MASTER
84 await[m_new_command==1]
85 /{m_command.index=m_command_reg.CMDI;
86 m_command.arg=m_argument_reg.CMDA;
87 m_command.response=m_command_reg.RTS;
88 m_command.data=m_data_command;
89 m_new_command=0;};
90 irq : timed;
91 read_isr_reg/m_isr_reg=$v : timed;
92 read_eisr_reg/m_eisr_reg=$v : timed;
93 read_response_reg/m_response_reg=$v : timed;
94 write_isr_reg[$v==0] : timed;
95 write_eisr_reg[$v==0] : timed;
96 (
97 if[m_isr_reg.CC == 1]
98 class.commandOK
99 [($command==m_command) &&

100 ($response==m_response_reg.CRSP)]
101 /m_status_reg.CICMD=0 : timed;
102 COMMAND_MASTER
103 []
104 else
105 class.commandError
106 [($command==m_command) &&
107 ($status==(m_eisr_reg.CCRC ?
108 SDH_CMD_ECRC : SDH_CMD_ETIMEOUT))]
109 /m_status_reg.CICMD=0 : timed;
110 COMMAND_MASTER
111)
112 []
113 class.off;
114 exit
115 endproc
116

117 process DATA_MASTER
118 ...
119 endproc

Figure 10: The OpenCores SD host controller device specification.

tifies the Command Master about a new command issued through
the argument register, while them_data_command variable indi-
cates whether the new command will be followed by a data transfer
stage. Them_command variable describes the command currently
being handled by the Command Master. Finally,m_tx_descr
andm_rx_descr represent block descriptors stored inside theBD
module.

The device interface state machine has been manually derived

from the register-transfer-level (RTL) design of the device in the
Verilog HDL which is used to synthesize the device hardware. The
structure of the state machine reflects the device architecture shown
in Figure 9 and its behaviour models the device’s reactions to soft-
ware commands. The order in which these software commands
are issued by the driver is determined automatically by the synthe-
sis algorithm. In some cases, however, the device interface state
machine specifies an explicit sequence of commands that must be

9

issued to the device in a certain state. For example, the state transi-
tions in lines 33–36 force the driver to reset the device, by writing
a 1 followed by a 0 to the reset register, before issuing any other
commands.

This is necessary due to a limitation of the current Termite syn-
thesis algorithm, namely, it requires the values of all interface vari-
ables to be known in any state. This white-box assumption does not
hold in the initial state of the device interface, since at this point the
device registers may have arbitrary values. The problem is over-
come by issuing a sequence of commands that bring the device to a
known state. In this example, writing 1 to the software reset register
resets all device registers to their known default values (lines 34–
35).

Once the reset is complete, the device is ready to handle com-
mands, as indicated by theon device-class event in line 37. Line 38
invokes theSDHOST process (line 42), which describes normal
operation of the device. This process consists of four concur-
rent subprocesses, corresponding to four device modules in Fig-
ure 9: REGISTERS, COMMAND_MASTER, DATA_MASTER, and
CLOCK_DIVIDER (lines 43–49). These subprocesses communi-
cate via variables, which can be read and updated by any process.
In addition,COMMAND_MASTER andDATA_MASTER synchronise
on theoff device-class event. This means that the event can only
occur when it is enabled in both processes, i.e., the device becomes
inactive when both the Command and the Data Master are inactive.

The preemption operator in line 50 specifies that writing 1 to the
reset register (line 51) interrupts normal device operation and resets
all registers to their default values. A subsequent writing of 0 to this
register (line 54) resumes device operation from the clean state.

We illustrate how device registers are modelled using the argu-
ment register as an example. Reading the register (line 66) returns
its current value. The effect of writing to this register depends
on the state of the command inhibit flag (theCICMD field of
the status register). If the flag is set, meaning that the
Command Master is currently busy handling a command (line 69),
a write to this register updates the register value (line 73), but does
not trigger any signals. A write to the argument register when
the flag is not set (line 73) triggers them_new_command signal
(line 75) and sets the command inhibit flag (line 77).

Them_new_command signal wakes up the Command Master
waiting for this signal in line 84. It uses values in theCOMMAND
andARGUMENT registers to form an SD command (lines 85–87)
and sends it over the bus. Upon completion of the command, it
raises an interrupt (line 90). The outcome of the command is re-
flected in the interrupt status registers (ISR andEISR) and the
response register. This is another situation where the white-box
assumption is violated, since the exact device state is not known
to the software until it reads the values of these registers. There-
fore, the device interface state machine specifies a sequence of reg-
ister reads required to restore the white-box invariant (lines 91–
93). Lines 94–95 acknowledge the interrupt by setting the interrupt
status registers to zero. Lines 96–111 generate thecommandOK
or commandError device-class event, depending on whether the
command was successful or not; they also reset the command in-
hibit flag, indicating that the Command Master is ready to handle
another command.

4.5 The driver state machine
The Termite synthesis algorithm combines the device and the OS

interface specifications and produces a driver state machine which
defines the driver’s reactions to OS requests and device interrupts.
The algorithm for constructing such a state machine will be pre-
sented in Section 5. Figure 11 shows a fragment of the resulting

Figure 11: A fragment of the SD host controller driver state ma-
chine generated by Termite. Exclamation marks denote messages
sent by the driver; question marks denote incoming messages from
the device or the OS. OS interface messages are shown in bold font;
device interface messages are in normal font; device-class events
are in italics.

state machine responsible for handling SD commands without a
data stage.

In the initial state (state 1), the driver waits for a request from the
OS. If this request satisfies the guard of the transition from state 1
to state 2 ([$request.data_present==false]), then this
transition is taken.

According to the OS interface specification, either the
commandOK or thecommandError device-class event must oc-
cur before the driver can send a completion message to the OS (Fig-
ure 8, lines 71 and 81). To achieve this goal, the driver state ma-
chine performs the following sequence of device interactions: it is-
sues the command specified in the request to the device through the
command and argument registers (transitions2 → 3 and3 → 4),
waits for an interrupt from the device (transition4 → 5), reads
the interrupt status registers and the response register (transitions
5 → 6, 6 → 7, and7 → 8), and acknowledges the interrupt (tran-
sitions8 → 9 and9 → 10). If the command completed without
an error (transition8 → 9), thecommandOK device-class event
occurs (transition11 → 13); otherwise (transition10 → 12), the
commandError event occurs. In either case, the fields of the
m_response variable of the OS interface are set to reflect the
status of the command. Finally, the driver sends a completion mes-
sage to the OS (transition13 → 1).

5. THE SYNTHESIS ALGORITHM
In this section we outline the Termite algorithm, which, given a

specification of driver interfaces, generates an implementation of

10

the driver in C, satisfying safety and liveness criteria introduced in
Section 2.4.

Conceptually, the algorithm proceeds in three steps (the actual
implementation involves performance optimisations, discussed be-
low, that make the algorithm iterative). The first step combines
individual driver interface specifications into a single specification.
The second step produces a driver state machine that has both safety
and liveness properties. The third step translates this state machine
into a driver implementation in C.

5.1 Computing an aggregate specification
During the first step, the synthesis algorithm computes a state

machine that combines constraints imposed by both driver interface
state machines. This aggregate state machine is computed as the
product of constituent interface state machines, synchronised on
device-class events. The state space of the product is a subset of
the Cartesian product of the multiplier state spaces. The product is
constructed according to the following rules:

1.
s1

m1[g1]/a1

−−−−−−→ s
′
1

〈s1, s2〉
m1[g1]/a1

−−−−−−→ 〈s′1, s2〉
2.

s2
m2[g2]/a2

−−−−−−→ s
′
2

〈s1, s2〉
m2[g2]/a2

−−−−−−→ 〈s1, s
′
2〉

3.
s1

e[g1]/a1

−−−−−→ s
′
1 s2

e[g2]/a2

−−−−−→ s
′
2

〈s1, s2〉
e[g1∧g2]/{a1;a2;}
−−−−−−−−−−−→ 〈s′1, s

′
2〉

wheres1 ands2 are states of the device and the OS interfaces state
machine respectively,m1 andm2 are interface messages,e is a
device class event,g1 andg2 are transition guards, anda1 anda2

are actions associated with transitions.
Rule 1 states that if a device interface message triggers a tran-

sition from states1 to states
′
1 in the device state machine (ex-

pression above the horizontal line), then a corresponding transition
must be added to the product state machine (expression below the
line). Rule 2 is analogous for the OS interface message. Rule 3
states that if a device-class event triggers state transitions in both
device and OS interfaces, then it also triggers a transition in the
product state machine; the guard of the new transition is the con-
junction of the original guards and its action is the concatenation of
the original actions.

The resulting state machine describes all legal driver behaviours.
It only contains transitions permitted by the original interface state
machines and hence satisfies the safety requirement. It does not,
however, guarantee liveness. In particular, it may enter a state
where some event is required to happen eventually, but not all
execution traces starting in this state contain this event. A non-
conforming trace either deadlocks after a finite number of transi-
tions or has an infinite loop, which does not include the required
event.

5.2 Computing the strategy
The second step of the synthesis algorithm restricts the product

state machine, eliminating such invalid traces and enforcing live-
ness. To this end, it solves the following problem in each reachable
state of the product state machine: given a target subset of states,
determine the action that the driver should take in the current state
in order to reach the target in a finite number of steps, assuming that
the device and the OS comply with their interface specifications.
The target set of states is computed based on the goals defined in
the OS interface specification usingtimed transitions. Note that
the product state machine may have more than one goal in a state,
e.g., when handling multiple concurrent requests from the OS. To
ensure that the resulting driver implementation correctly handles

arbitrary request interleavings, the target set includes states where
all of these goals are satisfied.

This problem can be formalised as a two-player reachability
game problem. A basic algorithm for solving such games is de-
scribed by Thomas [25]. Given an origin state and a set of goal
states, the algorithm recursively computes all states from which the
goal can be reached in one step. This includes states where there
exists at least one send transition leading to the goal (i.e., the driver
can perform an action that will take it to the goal) as well as states
where all enabled receive transitions lead to the goal (i.e., any mes-
sage from the environment takes the driver to the goal). This results
in a reachability graph containing all states and transitions of the
product state machine from which there exists a strategy leading to
the goal. The algorithm terminates when the origin state is added
to the graph or when a fix point is reached.

The reachability graph determines the action that the driver must
take in every state on its way to the goal. This action can be either
sending of a specific message to the device or the OS or waiting
for an incoming message. In the former case, exactly one send
transition is selected in the corresponding state of the product state
machine; the remaining send and receive transitions are eliminated.
In the latter case the driver must be prepared to handle any of the
possible inputs; therefore the algorithm eliminates all send transi-
tions, but keeps all receive transitions in the state.

The state machine constructed using the above procedure satis-
fies both safety and liveness requirements. Moreover, it specifies
exactly how the driver should behave in every state, i.e., whether
it should send a specific message or wait for a message from the
device or the OS.

5.3 Generating code
The last step of the synthesis process is translating the driver

state machine computed in the previous step into C. The resulting
driver implementation consists of a C structure that describes the
state of the driver, a constructor function that creates and initialises
an instance of this structure, and a number of entry points, one
for each incoming interface message. The state structure contains
a field that represents the state of the driver state machine and an
extra field for every variable of the device and the OS interface.

The implementation of a driver entrypoint is generated as fol-
lows. It first checks the values of state variables to determine the
driver state and identify the state transition that corresponds to the
given incoming message. It then updates state variables as defined
by the transition. If the target state of the transition is a send state,
the driver performs the send operation by invoking the appropriate
OS entry point. Otherwise, the driver returns from the entry point
to wait for the next incoming message.

The resulting implementation is single threaded: every opera-
tion performed by the driver corresponds to a transition in the state
machine and must occur atomically to preserve the state machine
semantics. In most operating systems, however, drivers must han-
dle invocations from multiple concurrent threads, which violates
the atomicity assumption. The two models can be reconciled by
either adding support for synchronisation in the synthesised code
or changing the OS interface to invoke the driver atomically. We
have implemented the latter approach by providing a thin wrapper
that performs the translation between the multi-threaded interface
supported by the OS and the message-based interface implemented
by the driver. Our architecture is similar to the one described in our
previous work [20].

5.4 Performance optimisations
This basic algorithm requires some enhancements to achieve sat-

11

isfactory performance when synthesising real drivers. First, com-
puting a product of interface state machines can lead to a state ex-
plosion, since the size of the product is approximately equal to the
product of the multiplier sizes. We observe that, while the product
state space can be enormous, the state space of the computed driver
state machine is always much smaller. We exploit this fact using
a lazy state-space exploration technique. The synthesis algorithm
computes states of the product on demand, as they are encountered
during the strategy construction. This way only a small subset of
the complete product state space needs to be explored.

Second, it is computationally infeasible to represent values of
variables explicitly during synthesis. For example, modelling all
possible values of a single 32-bit pointer would increase the state
space by a factor of232. Fortunately, in most cases only relations
among variables are important, as opposed to their actual values.
As an example, when passing a data pointer to a device, the specific
value of the pointer is less important than the fact that it is the same
as one obtained earlier from the OS.

Therefore, Termite manipulates variables and relations among
them symbolically. Internally, the synthesis algorithm represents
states of the interface state machines and the product state ma-
chine in terms of arithmetic constraints on state variables. These
constraints are derived from transition guards and actions. Such a
symbolic state describes a set of concrete states, permitting com-
pact representation and efficient manipulation of the state machine.

Our symbolic engine currently handles constraints of the form
(v==C) and(v1==v2) (wherev, v1, andv2 are variables, and
C is a constant) and their arbitrary boolean combinations. When
Termite encounters a statement that is not expressible via such
constraints, e.g.,(v1=v2+v3), it assumes that nothing is known
about the value ofv1 after execution of the statement. This as-
sumption is conservative: if a winning strategy can be found under
this assumption, this strategy is correct. It may, however, prevent
Termite from finding a strategy if one exists. For example, if a
transition leading to the goal has a guard that depends on the value
of variablev1, this transition can never be added to the strategy,
which may lead to a failure to find a winning strategy. In practice,
this problem is overcome by structuring Termite specifications to
avoid the use of such variables in transition guards, which requires
extra effort on the part of the specification developer. This limita-
tion is not intrinsic to the Termite approach and will be addressed
in the future.

6. EVALUATION
In this section we report on our experience in applying Termite

to synthesise drivers for real, non-trivial devices, measure the per-
formance of the synthesised drivers, and evaluate the reusability of
Termite device specifications across different OSes.

6.1 Synthesising drivers for real devices
We have used Termite to synthesise two device drivers for Linux:

a driver for the Ricoh R5C822 SD host controller (a full-featured
analogue of the SD host controller described in Section 4) and a
driver for the ASIX AX88772 100Mb/s USB-to-Ethernet adapter.
These drivers occupy the middle range of the driver complexity
spectrum. In particular, they support most features found in mod-
ern devices, including power management, request queueing, and
DMA (with the AX88772 driver using DMA indirectly via the USB
host controller). Since the two devices belong to different device
classes and attach to different buses (PCI and USB), these examples
cover a broad spectrum of issues involved in driver synthesis.

Both devices are based on proprietary designs, so we did not
have access to their RTL descriptions. The R5C822 controller im-

R5C822 AX88772

Native Linux driver 1174 1200
Device interface 653 463
OS interface (SD/Ethernet) 378 213
Bus interface (PCI/USB) 263 96
Synthesised driver 4667 2620

Table 3: Size in lines of code, excluding comments, of the R5C822
and AX88772 driver implementations in Linux, their Termite spec-
ifications, and the synthesised drivers.

plements a standardised SD host controller architecture whose de-
tailed informal description is publicly available [22]. This descrip-
tion provided sufficient information to derive a Termite model of
the controller interface.

The AX88772 data sheet did not contain sufficient information
to derive a Termite model of the device from it. In particular, it
did not provide a complete description of device initialisation and
configuration. Therefore, we used the Linux driver for this device
as the primary source of information.

As a result, the two specifications are substantially different in
style. As explained in Section 2.2, specifications derived from de-
vice documentation tend to be declarative in nature: they describe
how the device responds to various software commands, but do not
enforce a particular ordering of these commands, which must be
computed during driver synthesis based on the goals that the driver
must achieve in different states. In contrast, specifications based on
existing driver code are more constructive: they define sequences
of commands and device reactions that must be issued to generate
a specific device-class event (e.g., to complete and SD command or
transfer a network packet).

Table 3 compares the size of Termite specifications to the man-
ual implementation of equivalent drivers in the Linux kernel tree.
Although line counts are not a reliable complexity measure, espe-
cially when comparing code written in different languages, we note
that for both drivers the device specification, which is the only part
that needs to be developed per device, is significantly smaller than
the native Linux driver. The last line of the table shows that the
synthesised drivers are several times larger than the manual imple-
mentations. This is one area for future improvement.

In one case we were unable to completely specify the device
in Termite: the AX88772 driver must implement pre- and post-
processing of network buffers exchanged with the device in order
to append and remove an extra header that the device expects in
each packet. Termite currently does not provide facilities to specify
constraints on the content of memory buffers. DMA buffers are
currently represented using their virtual and physical addresses and
size, which allows passing unmodified buffers between the device
and the OS, but not performing any transformations on them. We
therefore implemented this functionality in C and made it available
to the device protocol via two messages:rxFixup andtxFixup.
The total size of these functions is 110 lines of C code, or less than
10% of the size of the native Linux implementation of this driver.

Synthesis took 2 minutes for the AX88772 driver and 2 hours 26
minutes for the R5C822 driver on a 2GHz AMD Opteron machine
with 8GB of RAM. This difference is due to the different styles of
the two device specifications. The AX88772 specification, derived
from an existing driver, only contains useful execution paths that
lead to the occurrence of device-class events. In contrast, the more
declarative R5C822 specification allows a large number of possible
command sequences, which the synthesis algorithm must explore
to find the meaningful ones that lead to the goal.

12

 20

 40

 60

 80

 100

 1 16 256 4096 65536
 0
 20
 40
 60
 80
 100
 120
 140

C
P

U
 U

til
iz

at
io

n
(%

)

T
hr

ou
gh

pu
t (

M
iB

/s
)

Packet Size (bytes)

Synthesized Driver
Native Driver

Figure 12: AX88772 TCP throughput benchmark results. The as-
cending line shows achieved throughput; the descending line shows
CPU utilisation.

6.2 Performance
We compared the performance of the synthesised drivers against

that of equivalent native Linux drivers. Benchmarks described in
this section were run on a 2GHz Centrino Duo machine. We dis-
abled one of the cores in order to allow precise CPU accounting.
For the SD bus controller driver we ran a benchmark that performs
a sequence of raw (unbuffered) reads from an SD card connected
to the controller. We measured CPU usage and achieved bandwidth
for different block sizes. In all cases, the throughput and CPU us-
age of the synthesised driver differed from that of the native Linux
driver by less than 1%.

The USB-to-Ethernet controller is more interesting from the per-
formance perspective, as it is capable of generating high CPU
loads, especially when handling small transfers. Figure 12 com-
pares throughput and CPU utilisation achieved by the synthesised
and native drivers under the Netperf TCP_STREAM benchmark.
Both drivers showed virtually identical performance even under the
heaviest loads induced by a large number of small packets.

These results are reassuring, as they indicate that automatically
synthesized drivers can achieve performance comparable to manu-
ally developed ones.

6.3 Reusing device specifications
In order to validate the claim that device specifications can be

reused across different OSes, we synthesised a FreeBSD R5C822
driver from the same device specification that was used to generate
the Linux version of the driver. To this end we developed specifi-
cations for the FreeBSD versions of the SD host control driver in-
terface and the PCI bus transport interface. These interfaces differ
from their Linux counterparts in a number of aspects, including SD
command format, driver initialisation, PCI resource allocation, bus
power management, and DMA descriptor allocation. Once these
interfaces were specified (this took approximately 6 person-hours,
an effort that only needs to be undertaken once for the given OS), a
driver for FreeBSD was generated automatically using the unmod-
ified device specification.

7. LIMITATIONS AND FUTURE WORK
Our experience with Termite has demonstrated the feasibility of

driver synthesis for real devices. This section summaries limita-
tions of the current implementation and improvements required to
turn it into a practical solution capable of generating a broad class
of drivers.

The front-end Termite currently relies on the device manufac-
turer or the driver developer to write a formal specification of the
device interface. While offering substantial advantages over con-
ventional driver development in terms of code structure, size, reuse,
and quality assurance, this approach still requires substantial man-
ual effort. This effort can be avoided by automatically distilling a

Termite model of the device from its RTL description. Implement-
ing support for this is the key area of our ongoing research.

The synthesis algorithm Several limitations of the current syn-
thesis algorithm complicate modelling. These include the white-
box assumption described in Section 4.4, and the lack of support
for complex constraints on variables in the symbolic execution en-
gine (Section 5.4).

In addition, Termite currently only allows the manipulation of
memory buffers via calls to C functions (Section 6.1). In order
to reduce the reliance on manually written code, we are working
on adding support for the specification and synthesis of constraints
on the memory buffer layout (fragmentation, alignment, etc.) and
content (headers, paddings, etc.). This way, one will only have to
use C to implement more complex data transformations, such as
hashing or encryption.

Termite does not support drivers that require dynamic resource
allocation. In some cases, resource allocation is performed by the
Termite runtime framework. For example, when a USB device
driver sends a request to the device, the framework allocates a new
USB request structure. Most of the remaining allocation opera-
tions performed by drivers are related to the management of DMA
buffers. Support for these operations will be added as part of the
buffer management extension described in the previous paragraph.

Finally, we are working on further improving the synthesis al-
gorithm to reduce the synthesis time and support more complex
devices with larger state spaces. One promising approach is to use
counterexample-guided abstraction refinement, which allows a re-
duction of the size of the state space to be explored by dynamically
identifying relevant state information. This technique has been suc-
cessfully applied in model checking and has also been shown to
work for two-player games [11].

Code generation The Termite C code generator requires im-
provement to reduce the size of the generated code and make it
more human-readable. Besides this, it currently produces single-
threaded driver code, which requires special run-time support in
the OS (see Section 5.3). Extending the code generator to synthe-
sise drivers that can handle concurrency and synchronisation will
reduce the complexity of the infrastructure required by Termite.

Debugging support Debugging automatically generated code is
notoriously difficult. Fortunately, source-level debugging is rarely
necessary for Termite drivers. Along with the C driver implemen-
tation, Termite also outputs the state machine of the driver, similar
to the one shown in Figure 11, which can be viewed as the imple-
mentation of the driver in a high-level language. By observing the
execution of the driver at the state-machine level, one can easily
spot situations where either the device or the OS does not behave
in the way the driver expects it to and trace these situations back
to errors in the interface specifications. Future work on Termite
includes developing tools for interactive state-machine debugging.

The overall approach The Termite approach to driver synthe-
sis relies on the distinctive state-machine-like structure of device
drivers and its relation to the structure of the I/O device. Some new
devices, such as high-end GPUs and network processors do not fit
into this model. These devices are built around a general-purpose
CPU, often running a separate instance of a general-purpose OS.
They are controlled by uploading programs that execute on the de-
vice’s CPU and communicate with the host CPU via the I/O bus.
Modelling such devices and generating software for them is beyond
the reach of Termite.

8. RELATED WORK
Most previous work on driver synthesis has been done in the

13

context of hardware/software co-design for embedded microcon-
trollers [18]. These devices are different than those targeted by
Termite as they have a simple internal structure and a small num-
ber of input and output signals. Furthermore, the synthesised driver
runs without an OS or with only a small RTOS. As such, these ap-
proaches do not tackle most of the issues addressed here, including
separation of device and OS specifications and dealing with large
state spaces. On the other hand, driving an embedded microcon-
troller often requires ensuring precise timing behaviour, which has
been the focus of much of the research in the area [26]. Since the
devices that we are concerned with are designed to work with a
time-shared OS, strict real-time guarantees are not required.

Wang et al. [27] describe a tool for more complex driver synthe-
sis for embedded devices. This approach does not separate OS and
device interfaces of the driver, forcing the driver designer to spec-
ify the complete driver behaviour for every device. In addition, data
handling is based on the assumption that driver functionality can be
split into non-overlapping control and data parts. While this is the
case for some simpler drivers, generally speaking, the control and
data path of a driver are tightly interleaved.

Device description languages such as Devil [17], NDL [5], and
HAIL [23], allow synthesis of low-level hardware accessor func-
tions based on a specification of device register and memory lay-
outs. This work is complementary to ours. While Termite does not
currently support domain-specific data types for describing hard-
ware register layouts, extending the Termite specification language
with Devil-style constructs would close this gap.

In recent work, Chipounov and Candea [2] have synthesised de-
vice drivers by automatically reverse engineering execution traces
of an existing driver for a different OS. The ability of this solu-
tion to synthesise a complete driver, functionally equivalent to the
original, has not yet been demonstrated. So far, the focus of this
research has been on extracting a device specification from an ex-
isting driver. The resulting specification could, in principle, be used
as input to our synthesis engine, which points to an interesting syn-
ergy between the two approaches.

9. CONCLUSIONS
Device driver synthesis is a promising approach to solving the

driver reliability problem. In this paper we have demonstrated the
feasibility of this approach by describing a driver synthesis method-
ology and its implementation. The ultimate goal of our work is
to create a viable alternative to current manual driver development
practices, leading to better quality drivers. The key factor in achiev-
ing this is to make driver synthesis attractive to device vendors by
providing easy-to-use and efficient languages and tools for it.

10. ACKNOWLEDGEMENTS
We would like to thank Franck Cassez, Scott Hahn, John Keys,

and Mona Vij for their insightful feedback on the Termite archi-
tecture. We would like to thank Andrew Baumann, Anton Burtsev,
Aaron Carroll, Nicholas FitzRoy-Dale, Timothy Roscoe, Thomas
Sewell, our shepherd Michael Swift, and the anonymous reviewers
for comments on earlier versions of this paper. Finally, we would
like to thank Balachandra Mirla for helping develop the model of
the SD controller described in Section 4.

11. REFERENCES
[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,

C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In1st EuroSys Conf.,
pages 73–85, Leuven, Belgium, Apr 2006.

[2] V. Chipounov and G. Candea. Reverse-engineering drivers for safety
and portability. In4th HotDep, San Diego, CA, USA, Dec 2008.

[3] A. Chou, B. Fulton, and S. Hallem. Linux kernel security report,
2005.

[4] M. Condict, D. Bolinger, D. Mitchell, and E. McManus. Microkernel
modularity with integrated kernel performance. Technical report,
OSF Research Institute, Jun 1994.

[5] C. L. Conway and S. A. Edwards. NDL: a domain-specific language
for device drivers. InLCTES’04, pages 30–36, Washington, DC,
USA, Jun 2004.

[6] J. Corbet, A. Rubini, and G. Kroah-Hartman.Linux Device Drivers.
O’Reilly & Associates, Inc, 3rd edition, 2005.

[7] A. Edvardsson. SD card mass storage controller.
http://www.opencores.org.

[8] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler
extensions. In4th OSDI, pages 1–16, San Diego, CA, Oct 2000.

[9] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: software guards for system address spaces. In7th OSDI, pages
75–88, Seattle, Washington, Nov 2006.

[10] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP kernel
crash analysis. In20th LISA, pages 101–111, Washington, DC, USA,
2006.

[11] T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided
control. In30th ICALP, pages 886–902, Jul 2003.

[12] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
MINIX 3: A highly reliable, self-repairing operating system. ACM
Operat. Syst. Rev., 40(3):80–89, Jul 2006.

[13] IEEE 802.3 Ethernet working group.
http://grouper.ieee.org/groups/802/3/.

[14] LOTOS - a formal description technique based on the temporal
ordering of observational behavior, 1989. ISO Standard 8807.

[15] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y. R. Shen, K. Elphinstone, and G. Heiser.
User-level device drivers: Achieved performance.Journal of
Computer Science and Technology, 20(5):654–664, Sep 2005.

[16] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland, and
G. Szalay. Two years of experience with aµ-kernel based OS.ACM
Operat. Syst. Rev., 25(2):51–62, Apr 1991.

[17] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G.Muller.
Devil: An IDL for hardware programming. In4th OSDI, pages
17–30, San Diego, CA, USA, Oct 2000.

[18] M. O’Nils, J. Öberg, and A. Jantsch. Grammar based modelling and
synthesis of device drivers and bus interfaces. In24th Euromicro
Conf., Washington, DC, USA, 1998.

[19] Realtek Corp. Single-chip multifunction 10/100mbps Ethernet
controller with power management. datasheet., 2005.

[20] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming device
drivers. In4th EuroSys Conf., Nuremberg, Germany, Apr 2009.

[21] SD Card Association. SD specifications part 1: Physicallayer
simplified specification, version 2.00, 2006.

[22] SD Card Association. SD specifications part a2: SD host controller
simplified specification, version 2.00, 2007.

[23] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: a language for
easy and correct device access. In5th EMSOFT, pages 1–9, Jersey
City, NJ, USA, Sep 2005.

[24] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In19th SOSP, Bolton
Landing (Lake George), New York, USA, Oct 2003.

[25] W. Thomas. On the synthesis of strategies in infinite games. In 12th
STACS, pages 1–13, 1995.

[26] E. Walkup and G. Borriello. Automatic synthesis of device drivers
for hardware/software co-design. Technical Report 94-06-04,
University of Washington, Aug 1994.

[27] S. Wang, S. Malik, and R. A. Bergamaschi. Modeling and integration
of peripheral devices in embedded systems. In40th DATE, 2003.

[28] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M.Harren,
G. Necula, and E. Brewer. SafeDrive: Safe and recoverable
extensions using language-based techniques. In7th OSDI, pages
45–60, Seattle, WA, USA, Nov 2006.

14

