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Abstract

Current operating systems lack well-defined protocols
for interaction with device drivers. We argue that this hin-
ders the development of reliable drivers and thereby under-
mines overall system stability. We present an approach to
specify driver protocols using a formalism based on state
machines. We show that it can simplify device program-
ming, facilitate static analysis of drivers against protocol
specifications, and enable detection of incorrect behaviours
at runtime.

1. Introduction

Device drivers constitute a major source of instability
in modern computer systems. While accounting for about
70% of the operating system code, drivers typically contain
several times more errors per line of code than other sys-
tem components [3]. As a result, the majority of operating
system failures can be traced to software faults in device
drivers.

A number of projects have explored techniques to im-
prove device driver reliability and decrease the reliance
of systems on driver correctness. L4 [10, 11], Xen [6],
Minix [8], and Nooks [15] experiment with hardware-
enforced isolation of device drivers. Singularity [5] and
SafeDrive [16] focus on language-based isolation tech-
niques. Vault [4], Singularity [5], and SLAM [1] explore
static approaches to detect the incorrect use of resource
management protocols and other operating system APIs.
Finally, the Devil [12] project provides a hardware inter-
face definition language aimed at simplifying programming
of the device interaction layer of device drivers.
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Despite these improvements, driver development re-
mains a tedious error-prone task. The source of the com-
plexity is that device drivers must simultaneously comply
with two sophisticated interfaces: the hardware interfaceof
the device and the software interface of the operating sys-
tem. Both interfaces are large, highly concurrent and often
poorly defined.

In this paper we focus on improving the interface be-
tween a driver and the operating system. Contemporary op-
erating systems are required to manage devices that provide
advanced capabilities, such as request queuing, power man-
agement, and hot plugging. In order to access these capabil-
ities, operating system designers define complex protocols
for interaction with device drivers. These protocols allowa
high degree of concurrency, with multiple user I/O requests
and hardware IRQ notifications being processed simultane-
ously. Additionally, the protocols require that driver pro-
grammers manage a large amount of state, including device
status information, the current protocol phase (e.g., active,
switching to low power mode, device disconnected, etc.),
and the status of individual I/O requests.

Typically, operating system documentation describes
protocols between the operating system and device drivers
in terms of a set of functions that the driver must implement
and a set of callbacks that the driver can invoke. This leaves
the constraints on the ordering, timing and arguments of in-
vocations implicit in the operating system implementation.
As a result, the driver developer is forced to construct and
maintain a mental model of the protocol between a driver
and its environment. If this model diverges from the one
used by the operating system, driver implementation be-
comes susceptible to subtle errors. Furthermore, constraints
of the protocol can change between operating system revi-
sions, turning correct drivers into faulty ones [14].

Besides being a major source of bugs, poorly defined
protocols make it impossible to verify the correctness of a
driver either statically or at runtime. In the absence of a pre-
cise specification of permitted behaviours it is meaningless
to ask whether a driver is correct.

To overcome these issues, we propose specifying driver



protocols—including the ordering, timing and content of
messages exchanged across a driver interface—using a for-
malism based on finite state machines (FSMs). This for-
malism makes automatic reasoning about driver behaviour
possible, but at the same time is easily readable by program-
mers and can be used as a core item of documentation. We
argue that this approach can reduce the number of bugs in
drivers. In addition, it facilitates static analysis of driver
implementations against protocol specifications and the de-
tection of incorrect behaviours at runtime.

We want to stress that we are not aiming to fix or im-
prove an existing driver framework (although the proposed
approach could be incorporated into an existing system).
Rather, we want to answer the question: how should a driver
framework be designed from the ground-up for improved
reliability? In order to validate the state-machine based ap-
proach, we are integrating it into our new user-level driver
framework for the L4/Iguana [9] embedded operating sys-
tem called Dingo.

2. The Dingo driver framework

The definition of driver protocol state machines has been
developed in tandem with the Dingo driver framework. A
driver in Dingo is represented as an object whose function-
ality is accessed through ports. A port is a collection of
required and provided interfaces that comprise a distinct
interaction point between the driver and its environment.
Ports are typed entities. For instance, a driver for the PCI-
based RTL8139D Ethernet controller has three ports: the
csr port of typePCIIORegion for access to the PCI I/O re-
gion containing control and status registers of the controller,
theirq port of typeIRQSource for interrupt delivery, and
theethernet port of typeEthernetController that ex-
ports the Ethernet controller functionality to the operating
system (Figure 1).

Dingo drivers are single-threaded and non-blocking1.
Operations that involve waiting for an external event, e.g., a
hardware interrupt, are split into two non-blocking phases:
(i) request and (ii) completion. Furthermore, the execution
model is non-reentrant, that is, when the driver calls the op-
erating system, the system may not call back into the driver.
As a result, calls to the operating system are atomic from
the point of view of a driver.

1Multithreaded driver framework APIs constitute a major source of
driver bugs [3]. As the performance of most drivers is bounded by device
rather than CPU speed, the benefits of multithreaded driversare minimal,
if any. One notable exception are high-speed network controllers with in-
dependent receive and transmit engines. In a single-threaded framework
such devices can be managed by two separate drivers in order to exploit
intrinsic parallelism. A detailed discussion of threadingissues is beyond
the scope of this paper.
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Figure 1. RTL8139D Ethernet controller
driver. Squares at the object boundary repre-
sent driver ports. Lollipop and socket sym-
bols denote, respectively, provided and re-
quired interfaces.

3. Driver protocol state machines: the basic
model

A protocol state machinedefines which sequences of in-
coming and outgoing calls are permitted through a port of a
certain type. A driver must comply with the protocol state
machines of all its ports. Protocol state machines are spec-
ified in a simplified form [2] of UML Statecharts [13]. The
language allows refinement and concurrency, with seman-
tics given in terms of classical automata that define sets
of finite and infinite traces. It is sufficiently expressive to
capture many of the constraints on driver behaviour, has a
tractable formal semantics and a graphical depiction that is
readily understood by software engineers.

We present details of the protocol state machines for-
malism using the example of theEthernetController
port protocol that must be implemented by all Ethernet
controller drivers in the Dingo framework. Figure 2 sum-
marises the protocol interfaces and depicts the associated
statechart. States of the statechart represent conceptual
states and activities of the driver that are visible at the pro-
tocol level. State transitions are triggered by method calls
to and from the driver. The syntax of state transition la-
bels is<trigger>[<guard>]/<action>, where<guard>
and<action> elements are optional. Question marks (?) in
trigger names denote incoming calls from the operating sys-
tem to the driver, i.e. events where control passes into the
driver. Exclamation marks (!) denote outgoing calls. The
points where control returns from the driver are not marked
explicitly.

Several standard Statecharts features [7] make modelling
more convenient. The compact representation of complex
protocols is achieved by organising states into a hierarchy.
Several states comprising a single higher-level activity can



IEthernetController interface

void start() initialise the driver
void stop() shutdown the driver, release all resources
void enable() enable receiver and transmitter
void disable() disable receiver and transmitter
void txContinue() more packets are available in the output queue
void rxAllocContinue() more buffers for incoming packets are available
void sleep(power level t level,

wakeup pattern t pattern)

put the device in a lower power mode

void wakeup() put the device in full-power mode

IEthernetControllerClient interface

void startComplete() driver initialisation completed successfully
void startFailed() driver initialisation failed
void stopComplete() driver shutdown completion notification
void linkUp() link established notification
void linkDown() no valid link established notification
void enableComplete() enable completion notification
void disableComplete() disable completion notification
bool txPacketPull(IMemDescriptor**) dequeue a packet from the output queue
bool rxPacketAlloc(IMemDescriptor**,

size t)

allocate a buffer for an incoming packet

void txPacketDone(IMemDescriptor*) packet transmission notification
void rxPacketInput(IMemDescriptor*) packet reception notification
void rxPacketAbort(IMemDescriptor*) return an unused rx buffer during driver shut-

down or deinitialisation
void txPacketAbort(IMemDescriptor*) return an unused tx buffer during driver shut-

down or deinitialisation
void sleeping() transition to the lower power mode is complete
void wakeupComplete() wakeup completion notification

(a) Summary of interfaces involved in the protocol.
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Figure 2. EthernetController protocol interfaces and state machine.



be clustered into asuper-state(e.g.,power control in Fig-
ure 2b). A single transition originating from a super-state
preempts any of its internal states (e.g., thestop? transi-
tion in Figure 2b). When the statechart is too large to fit
in a single diagram, a super-state can be collapsed into a
simple state and its content can be moved to a separate di-
agram. For example, shadowed states in Figure 2(b) repre-
sent super-states expanded in Figures 2(c) and (d).

A device driver may be simultaneously involved in sev-
eral loosely related activities. Often, these activities corre-
spond to services provided by different functional units of
the controlled device. They are conveniently modelled us-
ing orthogonal regionswhich make the logical concurrency
apparent and reduce the number of explicit states (though
not the size of the underlying transition system). When the
protocol state machine is in a state with several orthogo-
nal regions, each of the regions simultaneously constrains
the systems behaviour. On state diagrams, orthogonal re-
gions are separated with dashed lines. For instance, the
full power super-state in Figure 2b contains two orthogo-
nal regions: the left region describes the link status report-
ing functionality (implemented in the PHY functional unit
of the Ethernet controller), while the right region describes
the process of packet transmission and reception (imple-
mented in the MAC unit).

Device driver protocols often involve timing constraints.
To capture these constraints, the protocol state machine for-
malism allows states to be annotated with upper timing
bounds to be monitored by watchdog timers. A protocol is
violated if, after entry into such a state, the given amount of
time passes without the triggering of a transition leading to a
different state. For example, thestart in progress state
in Figure 2b has a label indicating that the driver should
complete initialisation within 5 seconds after receiving a
start? request.

Another important feature of protocol state machines are
protocol variables. Some elements of a protocol are incon-
venient to model with explict states and are more naturally
described using variables. Variables can be used in tran-
sition guards and actions. For example, the Ethernet con-
troller protocol contains numeric variablepower level de-
scribing the current power level at which the device is op-
erating (Figure 2b). We require that variables are finitely
bounded; they are a convenience rather than an increase in
modelling power.

The semantics of the protocol state machine are as fol-
lows: any protocol event (i.e., a call to a provided or a re-
quired interface of the port) that triggers a valid transition in
the state machine complies with the protocol specification.
An event that does not trigger any valid transitions violates
the protocol specification. A formal semantics of protocol
state machines is presented in [2].

We briefly overview theEthernetController proto-

col statechart. TheEthernetController protocol dia-
gram (Figure 2b) specifies initialisation and shutdown mes-
sages and the power management operations of an Eth-
ernet driver. The actual network connection management
and data transmission happen inside thelink status and
tx/rx states. Thelink status diagram specifies how the
driver reports network connection status changes to the op-
erating system. For instance, it asserts that the driver must
initialise its physical-layer interface and report link sta-
tus within 10 seconds of thestart complete notification.
Thetx/rx diagram describes rules of interfacing with the
receive and transmit engines of the controller. For example,
the topmost region of theenabled superstate details how
the driver pulls packets from the outgoing packet queue of
the operating system: whenever the driver has space for an-
other packet in its transmit buffers, it callstxPacketPull
to pull a packet from the queue. If the queue is empty
(txPacketPull returnsfalse), the driver stops polling the
queue until the operating system notifies it that there is more
data available for transmission with atxContinuenotifica-
tion.

4. Extensions

Some types of constraints cannot be captured using
the formalism as just presented. One example are con-
straints that specify relationships among different portsof
the driver. For instance, the RTL8139D driver is not al-
lowed to issue any PCI bus transactions after the controller
enters the power-saving mode. Capturing this constraint re-
quires the state machine of thecsr port to react to a sub-
set of power management methods of theethernet port.
Figure 3 shows the resulting state machine for this port. It
specifies when theread andwrite events may occur rela-
tive to occurrences of thesleeping andwakeup events of
theEthernetController protocol.

In general, it is too limiting to consider a protocol in iso-
lation from the protocols of other ports of the same driver.
We therefore define the semantics of multiple protocol state
machines applied to a single driver: an event complies with
the driver protocol if and only if it triggers a valid state tran-
sition in all protocol state machines associated with driver
ports that contain this event in their scopes.

Another group of constraints that require a more expres-
sive formalism are those related to states of individual I/O
transactions. In theEthernetController protocol, every
buffer obtained by the driver using arxPacketAlloc re-
quest should be either filled with data and returned to the
operating system via arxPacketInput operation, or re-
claimed by a call torxPacketAbort when the driver is in
the process of being stopped or disabled, and before it enters
a disabled state.

The lifecycle of a packet is specified by theRxPacket
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chart.

statechart in Figure 4. In order to incorporate per-
packet state information in the protocol specification, we
spawn a newRxPacket state machine on each successful
rxPacketAlloc call. Relevant messages are delivered to
all per-packet state machines. This extension complicates
static analysis of drivers and increases the overhead of run-
time failure detection (see Section 5 below). It is, however,
essential for maintaining an adequate model of driver be-
haviour. It enables the definition and detection of common
types of resource management errors in drivers. The exact
syntax and semantics of such dynamic state machines is part
of ongoing work.

5. Using protocol state machines to improve
driver reliability

In this section we describe how protocol state machines
help to improve the quality of device drivers.

Fault avoidance As mentioned above, in existing driver
frameworks the driver developer is required to maintain an
implicit mental model of interaction between a driver and its
environment. As a result, driver control logic becomes com-
plicated, and susceptible to errors that are often manifested
in corner cases, when the driver is handling an uncommon
combination of I/O requests. In addition, programmer at-
tention is diverted from the primary purpose of the driver:
controlling the hardware.

Our approach addresses this problem by making explicit
the state of the protocol along with the set of events that the
driver should be prepared to handle or generate in any state.

We believe that a driver framework that includes protocol
state machine specifications (similar to the one shown in
Figure 2) as part of its documentation has the potential to
greatly simplify device programming and thereby to reduce
the number of bugs in device drivers.

Fault detection via static analysis Static analysis is a set
of techniques for validating properties against the source
code of a program. A protocol state machine could be
treated as a property to be checked against an abstracted
version of a device driver. Recent approaches [1] pro-
cess the source code of device driver to produce abstract
models which may then be verified by exhaustive simula-
tion (model-checking). Ball et al. [1] note that devising
the properties to check was difficult due to the complex-
ity and ambiguity of the Windows device driver API. Our
approach seeks to avoid such problems by developing a
clearly-defined API backed by a formal semantics.

Runtime failure detection Alternatively, protocol viola-
tions can be detected at runtime by capturing exchanges
across the driver interface and tracking the state of the un-
derlying state machine. This approach to failure detectionis
completely transparent to the driver developer and does not
require any per-driver effort, as the protocol state machine
needs only be fefined once for a class of drivers (e.g., Eth-
ernet or audio). Moreover, given the protocol state machine
specification, it is possible to automatically generate a cor-
responding failure detector. For example, we have gener-
ated a failure detector for the RTL8139D driver by compil-
ing the statecharts in Figures 2 and 3 with the off-the-shelf
Rhapsody UML tool. The resulting state machine imple-
mentation is instantiated at runtime and triggered on each
call to or from the driver. The occurrence of a call in a
state where no corresponding transition exists representsa
fault in the driver. Other driver faults may be detected by
instantiating and monitoring timers when in timeout states.
Runtime failure detection introduces the overhead of trig-
gering the protocol state machine on each protocol event,
but we expect this overhead to be low compared to the cost
of the actual driver operations.

6. Related work

Several projects have attempted to formalise device
driver interfaces using FSMs. Vault [4] and SLAM [1] both
represent invariants of the driver framework API as FSMs
and statically check a driver against these invariants. How-
ever, these tools are aimed at existing systems that have not
been developed with a rigorous model of driver protocols in
mind. Therefore, they capture only selected aspects of the
API, and do not allow the complete description of the state
space and state transitions of the driver protocols.



In the Singularity [5] operating system, components, in-
cluding device drivers, interact through channels. The chan-
nel contract is described by a FSM that specifies the se-
quences of messages that may be exchanged. Channels are
entities of the Singularity implementation language, Sing#.
The Sing# compiler statically verifies that the driver re-
spects channel contracts. Thus, in Singularity support for
protocol state machines is integrated with the programming
language, which is simultaneously the major advantage and
limitation of the approach. In contrast, we aim to pro-
vide a separate formalism to specify driver protocols and
to make this formalism as expressive as necessary in order
to capture a rich set of constraints on driver behaviour. As
a result, the formalism presented here supports a number
of features unavailable in Singularity, including orthogonal
states and super-states, timeout states, dynamic spawningof
per-transaction state machines, protocol variables, and con-
straints involving multiple ports of the driver.

7. Current status and future work

At this stage we have implemented a state-machine
based Ethernet framework, an RTL8139D Ethernet driver
and a runtime failure detector for it, all running on real hard-
ware. Our experience with protocol state machines has, to
date, been positive: we found that interface definition in
the form of a statechart makes it easier to implement and
understand the control logic of the driver. We tested the
failure detector by introducing various faults into the driver
implementation. We were able to successfully detect proto-
col violations, such as the driver polling the output packet
queue despite being notified that there are no packets avail-
able for transmission, or the driver not being able to wake
up from a sleep state.

Current and future work includes a more thorough eval-
uation of the proposed approach on a variety of driver
types, development of complete formal semantics of proto-
col state machines, extensions of the protocol state machine
model with new capabilities, such as protocol inheritance
and optional protocol features, and static checking of de-
vice drivers against protocol specifications.

8. Conclusions

We have presented an approach to specifying the com-
plex protocols between device drivers and the operating sys-
tem using a state-machine formalism. We demonstrated via
the Ethernet protocol example that protocol state machines
allow a natural specification of many important aspects of
driver behaviour including advanced features such as power
management. Protocol state machines have the potential to
greatly simplify device programming and to reduce bugs. In

addition, they facilitate static analysis of driver implemen-
tations against protocol specifications and the detection of
incorrect behaviours at runtime.
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