
A SAT-Based Counterexample Guided Method
for Unbounded Synthesis

Alexander Legg1(B), Nina Narodytska2, and Leonid Ryzhyk2

1 Data61, CSIRO (formerly NICTA) and UNSW,
Sydney, Australia

alexander.legg@nicta.com.au
2 Samsung Research America, Mountain View, USA

Abstract. Reactive synthesis techniques based on constructing the win-
ning region of the system have been shown to work well in many cases
but suffer from state explosion in others. A different approach, proposed
recently, applies SAT solvers in a counterexample guided framework to
solve the synthesis problem. However, this method is limited to synthe-
sising systems that execute for a bounded number of steps and is incom-
plete for synthesis with unbounded safety and reachability objectives.
We present an extension of this technique to unbounded synthesis. Our
method applies Craig interpolation to abstract game trees produced by
counterexample guided search in order to construct a monotonic sequence
of may-losing regions. Experimental results based on SYNTCOMP 2015
competition benchmarks show this to be a promising alternative that
solves some previously intractable instances.

1 Introduction

Reactive systems are ubiquitous in real-world problems such as circuit design,
industrial automation, or device drivers. Automatic synthesis can provide a cor-
rect by construction controller for a reactive system from a specification. Reactive
synthesis is formalised as a game between the controller and its environment.
In this work we focus on safety games, in which the controller must prevent the
environment from forcing the game into an error state.

The reactive synthesis problem is EXPTIME-complete (when starting from a
symbolic representation of the game graph) so näıve algorithms are infeasible on
anything but simple systems.There are several techniques that aim tomitigate this
complexity by representing states and transitions of the system symbolically [4,17,
19]. These techniques incrementally construct a symbolic representation of the set
of discovered winning states of the game. The downside of this approach is that
keeping track of all discovered winning states can lead to a space explosion even
when using efficient symbolic representation such as BDDs or CNFs.

A. Legg—NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excellence program.
N. Narodytska and L. Ryzhyk—Work completed at Carnegie Mellon University.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 364–382, 2016.
DOI: 10.1007/978-3-319-41540-6 20

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 365

An alternative approach, proposed by Narodytska et al. [18], is to eschew
states and focus on runs of the game. The method works by exploring a subset
of the concrete runs of the game and proving that these runs can be generalised
into a winning strategy on behalf of one of the players. In contrast to other
existing synthesis methods, it does not store, in either symbolic or explicit form,
the set of winning states. Instead, it uses counterexample guided backtracking
search to identify a small subset of runs that are sufficient to solve the game.

This method has been shown to outperform BDDs on certain classes of games;
however it suffers from an important limitation: it is only able to solve games
with a bounded number of rounds. In case of safety games, this means proving
that the controller can keep the game within the safe region for a bounded
number of steps. This is insufficient in most practical situations that require
unbounded realisability.

In this paper, we extend the method by Narodytska et al. [18] to unbounded
safety games. To this end we enhance the method with computational learning:
every time the search algorithm discovers a new counterexample, the learning
procedure analyzes the counterexample, extracting a subset of states winning
for one of the players from it. The learning procedure ensures that reaching a
fixed point in these sets is sufficient to establish unbounded realisability. Our
method can be seen as a hybrid between the counterexample guided algorithm
by Narodytska et al. and methods based on losing set computation: we use the
former to guide the search, while we rely on the latter to ensure convergence.

We evaluate our method on the benchmarks of the 2015 synthesis competition
(SYNTCOMP’15). While our solver solves fewer total instances than competi-
tors, it solves the largest number of unique instances, i.e., instances that could
not be solved by any other sequential solver. These results confirm that there
exist classes of problems that are hard for traditional synthesis techniques, but
can be efficiently solved by our method. While further performance improve-
ments are clearly needed, in its current state the method may be a worthwhile
addition to a portfolio solver.

Section 2 outlines the original bounded synthesis algorithm. In Sect. 3 we
describe and prove the correctness of our extension of the algorithm to
unbounded games. In the following sections we evaluate our methodology, and
compare our approach to other synthesis techniques.

2 Background

A safety game, G = 〈X,U,C, δ, I, E〉, is defined over boolean state variables X,
uncontrollable action variables U , and controllable action variables C. We use
X , U , and C to denote sets of valuations of variables X, U , and C respectively.
I is the initial state of the game given as a valuation of state variables. E(X) is
the set of error states represented by its characteristic formula. The transition
relation δ(X,U,C,X ′) of the game is a boolean formula that relates current state
and action to the set of possible next states of the game. We assume deterministic
games, where δ(x, u, c, x′

1) ∧ δ(x, u, c, x′
2) =⇒ (x′

1 = x′
2).

366 A. Legg et al.

At every round of the game, the environment picks an uncontrollable
action, the controller responds by choosing a controllable action and the
game transitions into a new state according to δ. A run of a game
(x0, u0, c0), (x1, u1, c1) . . . (xn, un, cn) is a chain of state and action pairs
s.t. δ(xk, uk, ck, xk+1). A run is winning for the controller if x0 = I ∧ ∀i ∈
{1..n}(¬E(xi)). In a bounded game with maximum bound κ all runs are
restricted to length κ, whereas unbounded games consider runs of infinite length.
Since we consider only deterministic games, a run is uniquely described by a list
of assignments to U and C.

A controller strategy πc : X × U → C is a mapping of states and uncontrol-
lable inputs to controllable actions. A controller strategy is winning in a bounded
game of maximum bound κ if all runs (x0, u0, π

c(x0, u0)), (x1, u1, π
c(x1, u1)) . . .

(xn, un, πc(xn, un)) are winning. Bounded realisability is the problem of deter-
mining the existence of such a strategy for a bounded game.

An environment strategy πe : X → U is a mapping of states to uncontrol-
lable actions. A bounded run is winning for the environment if x0 = I ∧ ∃i ∈
{1..n}(E(xi)) and an environment strategy is winning for a bounded game if
all runs (x0, π

e(x0), c0), (x1, π
e(x1), c1) . . . (xn, πe(xn), cn) are winning for the

environment. Safety games are zero sum, therefore the existence of a winning
controller strategy implies the nonexistence of a winning environment strategy
and vice versa.

2.1 Counterexample Guided Bounded Synthesis

We review the bounded synthesis algorithm by Narodytska et al. [18], which is
the main building block for our unbounded algorithm.

Example. We introduce a running example to assist the explanation. We con-
sider a simple arbiter system in which the environment makes a request for
a number of resources (1 or 2), and the controller may grant access to up to
two resources. The total number of requests grows each round by the number
of environment requests and shrinks by the number of resources granted by the
controller in the previous round. The controller must ensure that the number
of unhandled requests does not accumulate to more than 2. Figure 1 shows the
variables (Fig. 1a), the initial state of the system (Fig. 1b), and the formulas for
computing next-state variable assignments (Fig. 1c) for this example. We use
primed identifiers to denote next-state variables and curly braces to define the
domain of a variable.

This example is the n = 2 instance of the more general problem of an arbiter
of n resources. For large values of n, the set of winning states has no compact
representation, which makes the problem hard for BDD solvers. In Sect. 3 we will
outline how the unbounded game can be solved without enumerating all winning
states.

Our bounded synthesis algorithm constructs abstractions of the game that
restrict actions available to one of the players. Specifically, we consider abstrac-
tions represented as trees of actions, referred to as abstract game trees (AGTs).

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 367

Controllable Uncontrollable State

request : {1, 2} grant0 = {0, 1} resource0 = {0, 1}
grant1 : {0, 1} resource1 = {0, 1}

nrequests : {0, 1, 2, 3}
(a) Variables

resource0 = 0; resource1 = 0; nrequests = 0;

(b) Initial State

resource0’ = grant0;

resource1’ = grant1;

nrequests’ = (nrequests + request >= resource0 + resource1)

? (nrequests + request - resource0 - resource1) : 0;

(c) Transition Relation

Fig. 1. Example

Figure 2b shows an example abstract game tree restricting the environment
(abstract game trees restricting the controller are similar). In the abstract game,
the controller can freely choose actions whilst the environment is required to
pick actions from the tree. After reaching a leaf, the environment continues
playing unrestricted. The tree in Fig. 2b restricts the first environment action to
request=1. At the leaf of the tree the game continues unrestricted.

The root of the tree is annotated by the initial state s of the abstract game
and the bound k on the number of rounds. We denote nodes(T) the set of all
nodes of a tree T , leaves(T) the subset of leaf nodes. For edge e, action(e)
is the action that labels the edge, and for node n, height(k, n) is the distance
from n to the last round of a game bounded to k rounds. height(k, T) is the
height of the root node of the tree. For node n of the tree, succ(n) is the set of
pairs 〈e, n′〉 where n′ is a child node of n and e is the edge connecting n and n′.

Given an environment (controller) abstract game tree T a partial strategy
Strat : nodes(T) → C (Strat : nodes(T) → U) labels each node of the tree with
the controller’s (environment’s) action to be played in that node. Given a partial
strategy Strat, we can map each leaf l of the abstract game tree to 〈s′, i′〉 =
outcome(〈s, i〉, Strat, l) obtained by playing all controllable and uncontrollable
actions on the path from the root to the leaf. An environment (controller) partial
strategy is winning against T if all its outcomes are states that are winning for
the environment (controller) in the concrete game.

Example: Intuition behind the algorithm. We present the intuition behind
our bounded synthesis method by applying its simplified version to the running
example. We begin by finding a trace of length k (here we consider k = 3) that is
winning for the controller, i.e., that starts from the initial state and avoids the
error set for three game rounds (see Fig. 2a). We use a SAT solver to find such

368 A. Legg et al.

gr0=0 gr1=0

req=1

gr0=0 gr1=0

req=1

gr0=1 gr1=0

req=1

〈s, 3〉

(a) Controller
winning trace

gr0=1 gr1=0

〈s, 3〉

(b) AGT

gr0=0 gr1=0

req=1

gr0=0 gr1=0

req=1

gr0=1 gr1=0

req=2

〈s, 3〉

(c) Environment
winning trace

gr0=1 gr1=0

req=2

〈s, 3〉

(d) Partial
Strategy

Fig. 2. Abstract game trees.

a trace, precisely as one would do in bounded model checking. Given this trace
we make an initial conjecture that any trace starting with action gr0=1 gr1=0 is
winning for the controller. This conjecture is captured in the abstract game tree
shown in Fig. 2b. We validate this conjecture by searching for a counterexample
trace that reaches an error state with the first controller action fixed to gr0=1

gr1=0. Such a trace, that refutes the conjecture, is shown in Fig. 2c. In this trace,
the environment wins by playing req=2 in the first round. This move represents
the environment’s partial strategy against the abstract game tree in Fig. 2b. This
partial strategy is shown in Fig. 2d.

Next we strengthen the abstract game tree taking this partial strategy into
account. To this end we again use a SAT solver to find a trace where the con-
troller wins while the environment plays according to the partial strategy. In the
resulting trace (Fig. 3a), the controller plays gr0=1 gr1=1 in the second round.
We refine the abstract game tree using this move as shown in Fig. 3b. The envi-
ronment’s partial strategy was to make two requests in the first round, to which
the controller responds by now granting an additional two resources in the second
round.

When the controller cannot refine the tree by extending existing branches, it
backtracks and creates new branches. Eventually, we obtain the abstract game
tree shown in Fig. 3c for which there does not exist a winning partial strategy on
behalf of the environment. We conclude that the bounded game is winning for
the controller.

The full bounded synthesis algorithm is more complicated: upon finding a
candidate partial strategy on behalf of player p against abstract game tree T ,
it first checks whether the strategy is winning against T . By only considering
such strong candidates, we reduce the number of refinements needed to solve the
game. To this end, the algorithm checks whether each outcome of the candidate
strategy is a winning state for opponent(p) by recursively invoking the synthesis
algorithm on behalf of the opponent. Thus, our bounded synthesis algorithm

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 369

gr0=0 gr1=0

req=1

gr0=1 gr1=1

req=1

gr0=1 gr1=0

req=2

〈s, 3〉

(a) Controller
winning trace

gr0=1 gr1=1

gr0=1 gr1=0

〈s, 3〉

(b) First refined AGT

gr0=1 gr1=1

gr0=1 gr1=1

gr0=1 gr1=0

gr0=1 gr1=1

gr0=1 gr1=1

gr0=1 gr1=1

〈s, 3〉

(c) Final Refined AGT

Fig. 3. Refined abstract game trees.

can be seen as running two competing solvers, for the controller and for the
environment.

The full procedure is illustrated in Algorithm1. The algorithm takes a con-
crete game G with maximum bound κ as an implicit argument. In addition, it
takes a player p (controller or environment), state s, bound k and an abstract
game tree T and returns a winning partial strategy for p, if one exists. The ini-
tial invocation of the algorithm takes the initial state I, bound κ and an empty
abstract game tree ∅. Initially the solver is playing on behalf of the environment
since that player takes the first move in every game round. The empty game
tree does not constrain opponent moves, hence solving such an abstraction is
equivalent to solving the original concrete game.

The algorithm is organised as a counterexample-guided abstraction refine-
ment (CEGAR) loop. The first step of the algorithm uses the findCandidate

function, described below, to come up with a candidate partial strategy that
is winning when the opponent is restricted to T . If it fails to find a strategy,
this means that no winning partial strategy exists against the opponent playing
according to T . If, on the other hand, a candidate partial strategy is found, we
need to verify if it is indeed winning for the abstract game T .

The verify procedure searches for a spoiling counterexample strategy in
each leaf of the candidate partial strategy by calling solveAbstract for the
opponent. The dual solver solves games on behalf of the opponent player.

If the dual solver can find no spoiling strategy at any of the leaves, then the
candidate partial strategy is a winning one. Otherwise, verify returns the move
used by the opponent to defeat a leaf of the partial strategy, which is appended
to the corresponding node in T in order to refine it in line (9).

We solve the refined game by recursively invoking solveAbstract on it.
If no partial winning strategy is found for the refined game then there is also
no partial winning strategy for the original abstract game, and the algorithm
returns a failure. Otherwise, the partial strategy for the refined game is projected
on the original abstract game by removing the leaves introduced by refinements.

370 A. Legg et al.

Algorithm 1. Bounded synthesis
1: function solveAbstract(p, s, k, T)
2: cand ← findCandidate(p, s, k, T) � Look for a candidate
3: if k = 1 then return cand � Reached the bound
4: T ′ ← T
5: loop
6: if cand = NULL then return NULL � No candidate: return with no solution
7: 〈cex, l, u〉 ← verify(p, s, k, T, cand) � Verify candidate
8: if cex = false then return cand � No counterexample: return candidate
9: T ′ ← append(T ′, l, u) � Refine T ′ with counterexample

10: cand ← solveAbstract(p, s, k, T ′) � Solve refined game tree
11: end loop
12: end function

13: function findCandidate(p, s, k, T)
14: T̂ ← extend(T) � Extend the tree with unfixed actions
15: f ← if p = cont then treeFormula(k, T̂) else treeFormula(k, T̂)
16: sol ← SAT(s(XT̂) ∧ f)
17: if sol = unsat then
18: if unbounded then � Active only in the unbounded solver
19: if p = cont then learn(s, T̂) else learn(s, T̂)
20: end if
21: return NULL � No candidate exists
22: else
23: return {〈n, c〉|n ∈ nodes(T) , c = sol(n)} � Fix candidate moves in T
24: end if
25: end function

26: function verify(p, s, k, T, cand)
27: for l ∈ leaves(gt) do
28: 〈k′, s′〉 ← outcome(s, k, cand, l) � Get bound and state at leaf
29: u ← solveAbstract(opponent(p), s′, k′, ∅) � Solve for the opponent
30: if u �= NULL then return 〈true, l, u〉 � Return counterexample
31: end for
32: return 〈false, ∅, ∅〉
33: end function

The resulting partial strategy becomes a candidate strategy to be verified at the
next iteration of the loop. In the worst case the loop terminates after all actions
in the game are refined into the abstract game.

The CEGAR loop depends on the ability to guess candidate partial strategies
in findCandidate. For this purpose we use the heuristic that a partial strategy
may be winning if each outcome of the strategy can be extended to a run of the
game that is winning for the current player. Clearly, if such a partial strategy does
not exist then no winning partial strategy can exist for the abstract game tree.
We can formulate this heuristic as a SAT query, which is constructed recursively
by treeFormula (for the controller) or treeFormula (for the environment)
in Algorithm 2.

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 371

The tree is first extended to the maximum bound with edges that are labeled
with arbitrary opponent actions (Algorithm1, line 14). For each node in the tree,
new SAT variables are introduced corresponding to the state (XT) and action
(UT or CT) variables of that node. Additional variables for the opponent actions
in the edges of T are introduced (Ue or Ce) and set to action(e). The state
and action variables of node n are connected to successor nodes succ(n) by an
encoding of the transition relation and constrained to the winning condition of
the player.

Algorithm 2. Tree formulas for Controller and Environment respectively
1: function treeFormula(k, T)
2: if height(k, T) = 0 then
3: return ¬E(XT)
4: else
5: return ¬E(XT)∧
6: ∧

〈e,n〉∈succ(T)

(δ(XT , Ue, CT , Xn) ∧ Ue = action(e) ∧ treeFormula(k, n))

7: end if
8: end function

9: function treeFormula(k, T)
10: if height(k, T) = 0 then
11: return E(XT)
12: else
13: return E(XT)∨
14:

∨

〈e,n〉∈succ(T)

(δ(XT , UT , Ce, Xn) ∧ Ce = action(e) ∧ treeFormula(k, n))

15: end if
16: end function

3 Unbounded Synthesis

Bounded synthesis can be used to prove the existence of a winning strategy
for the environment on the unbounded game by providing a witness. For the
controller, the strongest claim that can be made is that the strategy is winning
as long as the game does not extend beyond the maximum bound.

It is possible to set a maximum bound such that all runs in the unbounded
game will be considered. The näıve approach is to use size of the state space as
the bound (|X |) so that all states may be explored by the algorithm. A more
nuanced approach is to use the diameter of the game [3], which is the smallest
number d such that for any state x there is a path of length ≤d to all other

372 A. Legg et al.

gr0=1

gr1=0

gr0=1

gr1=1

n

gr0=0

gr1=1

gr0=1

gr1=1

gr0=1

gr1=1

〈s, k〉

(a) A losing AGT T

n

gr0=1

gr1=0

gr0=1

gr1=1

gr0=1

gr1=1

〈s, k〉

(b) Tree slice T1

gr0=1

gr1=0

gr0=1

gr1=1

n

(c) Tree slice T2

Fig. 4. Splitting of an abstract game tree by the learning procedure.

reachable states. However, the diameter is difficult to estimate and can still lead
to infeasibly long games.

We instead present an approach that iteratively solves games of increasing
bound while learning bad states from abstract games using interpolation. We
show that reaching a fixed point in learned states is sufficient for completeness.

3.1 Learning States with Interpolants

We extend the bounded synthesis algorithm to learn states losing for one of the
players from failed attempts to find candidate strategies. The learning proce-
dure kicks in whenever findCandidate cannot find a candidate strategy for
an abstract game tree. We can learn additional losing states from the tree via
interpolation. This is achieved in lines 18–20 in Algorithm1, enabled in the
unbounded version of the algorithm, which invoke learn or learn to learn
controller or environment losing states respectively (Algorithm 3).

Example: Why we use interpolants. Consider node n in Fig. 4a. At this
node there are two controller actions that prevent the environment from forcing
the game into an error state in one game round. We want to use this tree to
learn the states from which the controller can win playing one of these actions.

One option is using a BDD solver, working backwards from the error set, to
find all losing states. One iteration of this operation on our example would give
the set: nrequests = 3 ∨ (nrequests = 2 ∧ (resource0 = 0 ∨ resource1 =
0)) ∨ (nrequests = 1 ∧ (resource0 = 0 ∧ resource1 = 0)). In the general case
there is no compact representation of the losing set, so we try to avoid computing
it by employing interpolation instead. The benefit of interpolation is that it allows
approximating the losing states efficiently by obtaining an interpolant from a SAT
solver.

Given two formulas F1 and F2 such that F1∧F2 is unsatisfiable, it is possible
to construct a Craig interpolant [9] I such that F1 → I, F2 ∧ I is unsatisfiable,
and I refers only to the intersection of variables in F1 and F2. An interpolant
can be constructed efficiently from a resolution proof of the unsatisfiability of
F1 ∧ F2 [20].

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 373

Algorithm 3. Learning algorithms
Require: s(XT)∧ treeFormula(k, T) ≡ ⊥
Require: Must-invariant holds
Ensure: Must-invariant holds
Ensure: s(XT) ∧ BM �≡ ⊥ � s will be added to BM

1: function learn(s, T)
2: if succ(T) = ∅ then return
3: n ← non-leaf node with min height
4: 〈T1, T2〉 ← gtSplit(T, n)
5: I ← interpolate(s(XT)∧ treeFormula(k, T1), treeFormula(k, T2))
6: BM ← BM ∨ I
7: learn(s, T1)
8: end function

Require: s(XT)∧ treeFormula(k, T) ≡ ⊥
Require: May-invariant holds
Ensure: May-invariant holds
Ensure: s(XT) ∧ Bm[height(k, T)] ≡ ⊥ � s will be removed from Bm

9: function learn(s, T)
10: if succ(T) = ∅ then return
11: n ← non-leaf node with min height
12: 〈T1, T2〉 ← gtSplit(T, n)
13: I ← interpolate(s(XT)∧ treeFormula(k, T1), treeFormula(k, T2))
14: for i = 1 to height(k, n) do
15: Bm[i] ← Bm[i] \ I
16: end for
17: learn(s, T1)
18: end function

We choose a non-leaf node n of T with maximal depth, i.e., a node
whose children are leafs (Algorithm3, line 3). We then split the tree
at n such that both slices T1 and T2 contain a copy of n (line 4).
Figure 4b shows T1, which contains all of T except n’s children, and T2

(Fig. 4c), which contains only n and its children. There is no candidate
strategy for T so s ∧ treeFormula(k, T) is unsatisfiable. By construc-
tion, treeFormula(k, T) ≡ treeFormula(k, T1)∧treeFormula(k, T2) and
hence s ∧ treeFormula(k, T1) ∧ treeFormula(k, T2) is also unsatisfiable.

We construct an interpolant with F1 = s(XT) ∧ treeFormula(k, T1) and
F2 = treeFormula(k, T2) (line 5). The only variables shared between F1 and
F2 are the state variable copies belonging to node n. By the properties of the
interpolant, F2 ∧ I is unsatisfiable, therefore all states in I are losing against
abstract game tree T2 in Fig. 4c. We also know that F1 → I, thus I contains all
states reachable at n by following T1 and avoiding error states.

Example. At node n, the interpolant nrequests = 1∧resource1 = 1 captures
the information we need. Any action by the environment followed by one of the
controller actions at n will be winning for the controller.

374 A. Legg et al.

Algorithm 4. Amended tree formulas for Controller and Environment
1: function treeFormula(k, T)
2: if height(k, T) = 0 then
3: return ¬BM (XT)
4: else
5: return ¬BM (XT)∧
6: ∧

〈e,n〉∈succ(T)

(δ(XT , Ue, Cn, Xn) ∧ Ue = action(e) ∧ treeFormula(k, n))

7: end if
8: end function

9: function treeFormula(k, T)
10: if height(k, T) = 0 then
11: return E(XT)
12: else
13: return Bm[height(k, T)](XT) ∧
14:
(
E(XT)∨

∨

〈e,n〉∈succ(T)

(δ(XT , Un, Ce, Xn)∧Ce = action(e)∧treeFormula(k, n))

)

15: end if
16: end function

We have discovered a set I of states losing for the environment. Environment-
losing states are only losing for a particular bound: given that there does not
exist an environment strategy that forces the game into an error state in k rounds
or less; there may still exist a longer environment-winning strategy. We therefore
record learned environment-losing states along with associated bounds. To this
end, we maintain a conceptually infinite array of sets Bm[k] that are may-losing
for the controller, indexed by bound k. Bm[k] are initialised to E for all k.
Whenever an environment-losing set I is discovered for a node n with bound
height(k, n) in line 13 of Algorithm 3, this set is subtracted from Bm[i], for all
i less than or equal to the bound (lines 14–16).

The treeFormula function is modified for the unbounded solver (Algo-
rithm 4) to constrain the environment to the appropriate Bm. This enables fur-
ther interpolants to be constructed by the learning procedure recursively splitting
more nodes from T1 (Algorithm 3, line 7) since the states that are losing to T2

are no longer contained in Bm.
Learning of states losing from the controller is similar (learn in Algo-

rithm 3). The main difference is that environment-losing states are losing for
all bounds. Therefore we record these states in a single set BM of must-losing
states (Algorithm 3, line 6). This set is initialised to the error set E and grows as
new losing states are discovered. The modified treeFormula function (Algo-
rithm 4) blocks must-losing states, which also allows for recursive learning over
the entire tree.

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 375

3.2 Main Synthesis Loop

Figure 5 shows the main loop of the unbounded synthesis algorithm. The algo-
rithm invokes the modified bounded synthesis procedure with increasing bound
k until the initial state is in BM (environment wins) or Bm reaches a fixed point
(controller wins). We prove correctness in the next section.

Algorithm 5. Unbounded Synthesis
1: function solveUnbounded(T)
2: BM ← E
3: Bm[0] ← E
4: for k = 1 . . . do
5: if SAT(I ∧ BM) then return unrealisable � Losing in the initial state
6: if ∃i < k. Bm[i] ≡ Bm[i + 1] then � Reached fixed point
7: return realisable

8: Bm[k] ← E
9: checkBound(k)

10: end for
11: end function

Require: May and must invariants hold
Ensure: May and must invariants hold
Ensure: I �∈ Bm[k] if there exists a winning controller strategy with bound k
Ensure: I ∈ BM if there exists a winning environment strategy with bound k
12: function checkBound(k)
13: return solveAbstract(env, I, k, ∅)
14: end function

3.3 Correctness

We define two global invariants of the algorithm. The may-invariant states that
sets Bm[i] grow monotonically with i and that each Bm[i+1] overapproximates
the states from which the environment can force the game into Bm[i]. We call
this operation Upre, the uncontrollable predecessor. So the may-invariant is:

∀i < k. Bm[i] ⊆ Bm[i + 1], Upre(Bm[i]) ⊆ Bm[i + 1].

The must-invariant guarantees that the must-losing set BM is an underap-
proximation of the actual losing set B:

BM ⊆ B.

Correctness of solveUnbounded follows from these invariants. The must-
invariant guarantees that the environment can force the game into an error state
from BM , therefore checking whether the initial state is in BM (as in line 5) is
sufficient to return unrealisable. The may-invariant tells us that if Bm[i] ≡

376 A. Legg et al.

Bm[i + 1] (line 6) then Upre(Bm[i]) ⊆ Bm[i], i.e. Bm[i] overapproximates the
winning states for the environment. We know that I �∈ Bm[k] due to the post-
condition of checkBound, and since the may-invariant tells us that Bm is
monotonic then I must not be in Bm[i]. If I �∈ Bm[i] then I is not in the
winning states for the environment and the controller can always win from I.

Both invariants trivially hold after Bm and BM have been initialised in
the beginning of the algorithm. The sets Bm and BM are only modified by
the functions learn and learn. Below we prove that learn maintains the
invariants. The proof of learn is similar.

3.4 Proof of learn

We prove that postconditions of learn are satisfied assuming that its precon-
ditions hold.

Lines (11 and 12) splits the tree T into T1 and T2, such that T2 has
depth 1. Consider formulas F1 = s(XT) ∧ treeFormula(k, T1) and F2 =
treeFormula(k, T2). These formulas only share variables Xn. Their conjunc-
tion F1 ∧ F2 is unsatisfiable, as by construction any solution of F1 ∧ F2 also
satisfies s(XT)∧treeFormula(k, T), which is unsatisfiable (precondition (b)).
Hence the interpolation operation is defined for F1 and F2.

Intuitively, the interpolant computed in line (13) overapproximates the set
of states reachable from s by following the tree from the root node to n, and
underapproximates the set of states from which the environment loses against
tree T2.

Formally, I has the property I ∧ F2 ≡ ⊥. Since T2 is of depth 1, this means
that the environment cannot force the game into Bm[height(k, n) − 1] playing
against the counterexample moves in T2. Hence, I ∩ Upre(Bm[height(k, n) −
1]) = ∅. Furthermore, since the may-invariant holds, I ∩ Upre(Bm[i]) = ∅, for
all i < height(k, n). Hence, removing I from all Bm[i], i ≤ height(k, n) in
line (15) preserves the may-invariant, thus satisfying the first post-condition.

Furthermore, the interpolant satisfies F1 → I, i.e., any assignment to Xn

that satisfies s(XT) ∧ treeFormula(k, T1) also satisfies I. Hence, removing I
from Bm[height(k, n)] makes s(XT) ∧ treeFormula(k, T1) unsatisfiable, and
hence all preconditions of the recursive invocation of learn in line (17) are
satisfied.

At the second last recursive call to learn, tree T1 is empty, n
is the root node, treeFormula(k, T1) ≡ Bm[height(k, T1)](XT); hence
s(XT)∧treeFormula(k, T1) ≡ s(XT) ∧ Bm[height(k, T1)](XT) ≡ ⊥. Thus
the second postcondition of learn holds.

The proof of learn is similar to the above proof of learn. An inter-
polant constructed from F1 = s(XT) ∧ treeFormula(k, T1) and F2 =
treeFormula(k, T2) has the property I ∧F2 ≡ ⊥ and the precondition ensures
that the controller is unable to force the game into BM playing against the coun-
terexample moves in T2. Thus adding I to BM maintains the must-invariant
satisfying the first postcondition.

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 377

Likewise, in the second last recursive call of learn with the empty tree
T1 and root node n: treeFormula(k, T1) ≡ ¬BM (XT). Hence s(XT) ∧
treeFormula(k, T1) ≡ s(XT)∧¬BM (XT) ≡ ⊥. Therefore s(XT)∧BM (XT) �≡
⊥, the second postcondition, is true.

3.5 Proof of Termination

We must prove that checkBound terminates and that upon termination its
postcondition holds, i.e., state I is removed from Bm[κ] if there is a winning
controller strategy on the bounded safety game of maximum bound κ or it is
added to BM otherwise. Termination follows from completeness of counterex-
ample guided search, which terminates after enumerating all possible opponent
moves in the worst case.

Assume that there is a winning strategy for the controller at bound κ. This
means that at some point the algorithm discovers a counterexample tree of bound
κ for which the environment cannot force into E. The algorithm then invokes the
learn method, which removes I from Bm[κ]. Alternatively, if there is a winning
strategy for the environment at bound κ then a counterexample losing for the
controller will be found. Subsequently learn will be called and I added to BM .

3.6 Optimisation: Generalising the Initial State

This optimisation allows us to learn may and must losing states faster. Starting
with a larger set of initial states we increase the reachable set and hence increase
the number of states learned by interpolation. This optimisation requires a mod-
ification to solveAbstract to handle sets of states, which is not shown.

The optimisation is relatively simple and is inspired by a common greedy
heuristic for minimising unsat cores. Initial state I assigns a value to each
variable in X. If the environment loses 〈I, k〉 then we attempt to solve for a
generalised version of I by removing one variable assignment at a time. If the
environment loses from the larger set of states then we continue generalising. In
this way we learn more states by increasing the reachable set. In our benchmarks
we have observed that this optimisation is beneficial on the first few iterations
of checkBound.

4 Evaluation

We evaluate our approach on the benchmarks of the 2015 synthesis competition
(SYNTCOMP’15). Each benchmark comprises of controllable and uncontrollable
inputs to a circuit that assigns values to latches. One latch is configured as the
error bit that determines the winner of the safety game. The benchmark suite is a
collection of both real-world and toy specifications including generalised buffers,
AMBA bus controllers, device drivers, and converted LTL formulas. Descriptions
of many of the benchmark families used can be found in the 2014 competition
report [14].

378 A. Legg et al.

Algorithm 6. Generalise I optimisation
function checkBound(k)

r ← solveAbstract(env, I, k, ∅)
if r �= ∅ then return r
s′ ← I
for x ∈ X do

r ← solveAbstract(env, s′ \ {x}, k, ∅)
if r = NULL then s′ ← s′ \ {x} � Removes the assignment to x from s′

end for
return NULL

end function

The implementation of our algorithm uses Glucose [2] for SAT solving and
Periplo [21] for interpolant generation. We intend to open source the tool for
SYNTCOMP’16. The benchmarks were run on a cluster of Intel Quad Core Xeon
E5405 2 GHz CPUs with 16 GB of memory. The solvers were allowed exclusive
access to a node for one hour to solve an instance.

The results of our benchmarking are shown, along with the synthesis competi-
tion results [1], in Table 1. The competition was run on Intel Quad Core 3.2 GHz
CPUs with 32 GB of memory, also on isolated nodes for one hour per instance.
The competition results differ significantly from our own benchmarks due to
this more powerful hardware. For our benchmarks we report only the results for
solvers we were able to run on our cluster. The unique column lists the number
of instances that only that tool could solve in the competition (excluding our
solver). In brackets is the number of instances that only that tool could solve,
including our solver.

Table 1. Synthesis competition 2015 results

Solver Solved (Competition) Solved (Benchmarks) Unique

Simple BDD Solver (2) 195 189 10 (6)

AbsSynthe (seq2) 187 139 2

Simple BDD Solver (1) 185 175

AbsSynthe (seq3) 179 134

Realizer (sequential) 179

AbsSynthe (seq1) 173 139 1

Demiurge (D1real) 139 136 5 (2)

Aisy 98

Unbounded Synthesis 103 12

Our implementation was able to solve 103 out of the 250 specification in the
allotted time, including 12 instances that were not solved by any other solver

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 379

in the sequential track of the competition. The unique instances we solved are
listed in Table 2.

Table 2. Instances uniquely solved by our approach

1. 6s216rb0 c0to31 7. driver c10n

2. cnt30y 8. stay18y

3. driver a10n 9. stay20n

4. driver a8n 10. stay20y

5. driver b10y 11. stay22n

6. driver b8y 12. stay22y

Five of the instances unique to our solver are device driver instances and
another five are from the stay family. This supports the hypothesis that different
game solving methodologies perform better on certain classes of specifications.

We also present a cactus plot of the number of instances solved over time
(Fig. 5). We have plotted the best configuration of each solver we benchmarked.
The solvers shown are Demiurge [4], the only SAT-based tool in the compe-
tition, the winner of the sequential realisability track Simple BDD Solver

2 [22], and AbsSynthe (seq3) [6].

0 10 20 30 40 50 60
0

25

50

75

100

125

150

175

200

Time (minutes)

In
st

a
n
ce

s
so

lv
ed

Unbounded synthesis
AbsSynthe (seq2)
Demiurge
Simple BDD Solver 2

Fig. 5. Number of instances solved over time. (Color figure online)

380 A. Legg et al.

Whilst our solver is unable to solve as many instances as other tools, it was
able to solve more unique instances than any solver in the competition. This
confirms that our methodology is able to fill gaps in a state of the art synthesis
toolbox by more efficiently solving instances that are hard for other techniques.
For this reason our solver would be a worthwhile addition to a portfolio solver.
In the parallel track of the competition, Demiurge uses a suite of 3 separate
but communicating solvers. The solvers relay unsafe states to one another, which
is compatible with the set BM in our solver. This technique can already solve
each of the unique instances solved by our solver but there may still be value in
the addition of this work to the portfolio. It remains future work to explore this
possibility.

5 Related Work

Synthesis of safety games is a thoroughly explored area of research with most
efforts directed toward solving games with BDDs [7] and abstract interpretation
[6,22]. Satisfiability solving has been used previously for synthesis in a suite of
methods proposed by Bloem et al. [4]. The authors propose employing competing
SAT solvers to learn clauses representing bad states, which is similar to our
approach but does not unroll the game. They also suggest QBF solver, template-
based, and Effectively Propositional Logic (EPR) approaches.

SAT-based bounded model checking approaches that unroll the transition
relation have been extended to unbounded by using conflicts in the solver [15],
or by interpolation [16]. However, there are no corresponding adaptations to
synthesis.

Incremental induction [5] is another technique for unbounded model check-
ing that inspired several approaches to synthesis including the work presented
here. Morgenstern et al. [17] proposed an technique that computes sets of states
that overapproximate the losing states (similar to our Bm) and another set of
winning states (similar to the negation of BM). Their algorithm maintains a
similar invariant over the sets of losing states as our approach and has the same
termination condition. It differs in how the sets are computed, which it does
by inductively proving the number of game rounds required by the environment
to win from a state. Chiang and Jiang [8] recently proposed a similar approach
that focusses on computing the winning region for the controller forwards from
the initial state in order to take advantage of reachability information and bad
transition learning without needing to discard learnt clauses.

There are different approaches to bounded synthesis than the one described
here. The authors of [13] suggest a methodology directly inspired by bounded
model checking and it has been adapted to symbolic synthesis [11]. Lazy synthesis
[12] is a counterexample guided approach to bounded synthesis that refines an
implementation for the game instead of an abstraction of it.

The original bounded synthesis algorithm of Narodytska et al. [18] solves
realisability without constructing a strategy. In [10] the realisability algorithm
is extended with strategy extraction. The technique relies on interpolation over

A SAT-Based Counterexample Guided Method for Unbounded Synthesis 381

abstract game trees to compute the winning strategy. In the present work we
use interpolation in a different way in order to learn losing states of the game.
In addition, this method could be easily adapted to the unbounded realisability
algorithm presented here to generate unbounded strategies.

6 Conclusion

We presented an extension to an existing bounded synthesis technique that pro-
motes it to unbounded safety games. The approach taken as whole differs from
other synthesis techniques by combining counterexample guided game solving
with winning set computation. Intuitively, the abstraction refinement frame-
work of the bounded synthesis algorithm restricts the search to consider only
moves that may lead to winning strategies. By constructing sets of bad states
during this search we aim to consider only states that are relevant to a winning
strategy while solving the unbounded game.

The results show that our approach is able to solve more unique instances
than other solvers by performing well on certain classes of games that are hard
for other methodologies.

Future work includes incorporating the solver into a parallel suite of com-
municating solvers [4]. There is evidence that different solvers perform well on
different classes of games. Thus we hypothesise that the way forward for synthe-
sis tools is to combine the efforts of many different techniques.

References

1. Syntcomp 2015 results. http://syntcomp.cs.unisaarland.de/syntcomp2015/
experiments/. Accessed 29 Jan 2016

2. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer,
Heidelberg (2014)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

6. Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: AbsSynthe: abstract synthesis
from succinct safety specifications. In: Workshop on Synthesis, SYNT, pp. 100–116
(2014)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: Symposium on Logic in Computer Science,
pp. 428–439 (1990)

http://syntcomp.cs.unisaarland.de/syntcomp2015/experiments/
http://syntcomp.cs.unisaarland.de/syntcomp2015/experiments/

382 A. Legg et al.

8. Chiang, T.W., Jiang, J.H.R.: Property-directed synthesis of reactive systems from
safety specifications. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2015, pp. 794–801 (2015)

9. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957)

10. Eèn, N., Legg, A., Narodytska, N., Ryzhyk, L.: SAT-based strategy extraction
in reachability games. In: AAAI Conference on Artificial Intelligences, AAAI,
pp. 3738–3745 (2015)

11. Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)

12. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)

13. Finkbeiner, B., Schewe, S.: Bounded synthesis. Softw. Tools Technol. Transf. STTT
15(5–6), 519–539 (2013)

14. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,
G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.:
The first reactive synthesis competition (SYNTCOMP 2014). Computing Research
Repository, CoRR abs/1506.08726 (2015). http://arxiv.org/abs/1506.08726

15. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002)

16. Dransfield, M.R., Marek, V.W., Truszczyński, M.: Satisfiability and computing van
der Waerden numbers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 1–13. Springer, Heidelberg (2004)

17. Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induc-
tion. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191.
Springer, Heidelberg (2013)

18. Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games
without controllable predecessor. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 533–540. Springer, Heidelberg (2014)

19. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

20. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997)

21. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013)

22. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal
Methods in Computer-Aided Design FMCAD, pp. 219–226 (2014)

http://arxiv.org/abs/1506.08726

	A SAT-Based Counterexample Guided Method for Unbounded Synthesis
	1 Introduction
	2 Background
	2.1 Counterexample Guided Bounded Synthesis

	3 Unbounded Synthesis
	3.1 Learning States with Interpolants
	3.2 Main Synthesis Loop
	3.3 Correctness
	3.4 Proof of learn
	3.5 Proof of Termination
	3.6 Optimisation: Generalising the Initial State

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

