
File Systems Deserve Verification Too!

Gabriele Keller1 2 Toby Murray1 2 Sidney Amani1 2 Liam O’Connor1 2 Zilin Chen1 2

Leonid Ryzhyk1 2 3 Gerwin Klein1 2 Gernot Heiser1 2

1NICTA ∗, Sydney, Australia
2 University of New South Wales, Australia

3University of Toronto, Canada

Abstract
File systems are too important, and current ones are too
buggy, to remain unverified. Yet the most successful verifi-
cation methods for functional correctness remain too expen-
sive for current file system implementations — we need ver-
ified correctness but at reasonable cost. This paper presents
our vision and ongoing work to achieve this goal for a new
high-performance flash file system, called BilbyFs. BilbyFs
is carefully designed to be highly modular, so it can be veri-
fied against a high-level functional specification one compo-
nent at a time. This modular implementation is captured in a
set of domain specific languages from which we produce the
design-level specification, as well as its optimised C imple-
mentation. Importantly, we also automatically generate the
proof linking these two artefacts. The combination of these
features dramatically reduces verification effort. Verified file
systems are now within reach for the first time.

1. Introduction
File systems are a critical part of any operating system (OS).
For example, the Linux kernel source tree presently contains
49 different file systems (not counting variants and pseudo
file systems), plus a few for use in specialised systems (e.g.

∗NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
This material is based on research sponsored by Air Force Research Laboratory and
the Defense Advanced Research Projects Agency (DARPA) under agreement number
FA8750-12-9-0179. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory, the Defense Advanced
Research Projects Agency or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PLOS ’13 November 03-06 2013, Farmington, PA, USA.
Copyright c© 2013 ACM 978-1-4503-2460-1/13/11. . . $15.00
http://dx.doi.org/10.1145/2525528.2525530

romfs or promfs). Together these account for a significant
fraction of the total code base of the kernel: after drivers
(57%) and architecture-specific code (18%), file systems
comprise 7% of the source lines of code (SLOC) of the
Linux kernel, version 3.10.

The advent of new classes of storage devices, as well
as the desire for more (and more specialised) functionality,
such as different reliability-performance trade-offs, drives
the growth in the number of file systems. New usage sce-
narios, e.g. resulting from the widespread adoption of virtu-
alisation, are creating pressure to change internal APIs in the
storage stack [Jannen et al. 2013], which will require mas-
sive re-writing of file-system code.

The ongoing development of file systems is not only
costly, it is also a significant hazard to the dependability
of the OS. Like much other system code, file-system code
is complex, full of tricky corner cases, and is necessarily
bloated by lots of boring error handling code. As a result,
file systems are a significant source of kernel bugs [Yang
et al. 2006, Palix et al. 2011]. Even mature file systems with
supposedly stable code bases, such as Ext3, still experience
frequent bug fixes [Lu et al. 2013].

The use of static analysis for finding bugs in systems code
has become popular in recent years [Ball et al. 2010, Bessey
et al. 2010]. While very useful in many cases, this approach
provides little promise for file systems code, as the majority
of file-system bugs are semantic faults [Lu et al. 2013].

We postulate that file systems are too important to be left
at the whim of the traditional design-code-debug-redesign
cycle performed on C code — they deserve and need bet-
ter. We furthermore claim that it is possible to build real-
world file system implementations that are provably correct.
Specifically, we observe that:

• Real file systems are highly modular.
• The storage stack of contemporary operating systems re-

quires and defines many intermediate abstraction levels.
• For each module, the translation between abstraction lev-

els is logically straightforward, but practically obscured
by error handling with tricky corner cases.

Fu
nc

tio
na

l S
pe

ci
fic

at
io

n
in

 Is
ab

el
le

Refinement
Proof

manual, file system specific

generated

manual, FS independent

Data layout spec

DDSL code CDSL

Data (de-)serialisation
code

Componentised
Control Code

C Code

C ADT
Implementation

proof

proof

ve
rifi

ed
 fi

le
sy

st
em

 c
od

e

lo
w

 le
ve

l F
S

sp
ec

ifi
ca

tio
n

 Isabelle
ADT Spec

Isabelle Spec of
Code

generates

generates

1

2 3

4

Figure 1. Framework Components

We can summarise the above observation that (given a
design provided by experts) the implementation of file sys-
tems is, conceptually, not overly complex, yet full of pit-
falls. This is as good a case for automation as there ever
was! Furthermore, we observe that, if coding can be auto-
mated, i.e. the code generated, then it should also be pos-
sible to prove the correctness of the generation. Compared
to the generation of optimised machine code from an arbi-
trary C source [Leroy 2009], generating file system code is
an easier problem. Although the proof will have to work on
richer semantic structures, the input is more constrained in
its structure and type system.

In short, our claim is:

• Given an appropriate design, the implementation of file
systems is logically straightforward.
• The salient algorithms and on-media data structures can

be easily expressed in a (collection of) appropriate high-
level, domain-specific languages (DSLs).
• It is straightforward to produce C code from such DSLs,

without impacting overall performance.
• It is also possible to generate correctness proofs with the

C code.

We propose a concrete approach for constructively val-
idating these claims. Specifically, we present the prototype
of a framework which lets us specify the high-level control
logic as well as the on-medium data structures of a file sys-
tem in a modular fashion. From this, the framework gen-
erates the modules’ C implementation, including all error-
handling and serialisation/de-serialisation code. The frame-
work also generates formal specifications of module func-
tionality as well as proofs of the correctness of the generated
implementation.

This provides the inputs to a verification of the overall
file-system functionality by a manual refinement proof from
a high-level specification to the module specifications. This
step is important, because it is the connection to the top-

level specification that makes sure the generated lower-level
specifications are not merely trivial or defective.

While formal verification has been shown to be cost-
competitive with traditionally-engineered high-assurance
code [Klein et al. 2009], we expect dramatically increased
verification productivity (in terms of cost per verified line
of C), achieving verified file systems whose life-cycle cost is
significantly less than that of traditionally-engineered ones.

We have so far completed the design for the first versions
of two domain-specific languages, one for the high-level
control logic and the other for specifying the on-medium
data structures. To convince ourselves that the languages’
expressiveness is sufficient, we have used these DSLs to
specify an initial flash file system called BilbyFs. We have
implemented the front-ends of the code and proof genera-
tors, as well as C code generation from the control DSL, and
have formal semantics for both languages, some mechanised
in Isabelle/HOL.

In Section 2 we give an overview of our framework, fol-
lowed by a discussion of our approach to a modular design
in Section 3. Section 4 introduces two domain-specific lan-
guages which play a central role in the approach. We discuss
the current status of the project in Section 5 in more detail.

2. Overview
File systems code can generally be classified as one of the
following: (A) code for serialising and de-serialising be-
tween in-memory data structures and flat on-medium rep-
resentations; (B) code to create and maintain the in-memory
data structures to store the file system information; and (C)
code implementing the actual file-system logic (short control
code). A large fraction of this control code deals with errors;
[Saha et al. 2011] showed that file systems have among the
highest density of error-handling code in Linux.

Code of different categories differs significantly in nature
and structure, and we treat them separately, resulting in sim-
pler, specialised tools. Specifically we are using two differ-
ent, domain-specific languages for class (A) and (C). Class

(B) represents commonly used data structures, such as lists,
finite maps and buffers, most of which are not specific to
a particular file system and can be verified independently.
Even if some of these data structures are non-standard and
specific to the file system, their verification will still be or-
thogonal to the verification of control code and data layout.

Figure 1 shows the main components of our framework.
Boxes represent code or specifications while block arrows
represent the proofs which connect them. Framed boxes in-
dicate components that the file system implementor must
provide. Of these, white boxes are specific to the file sys-
tem being built, and shaded boxes are reusable between dif-
ferent file systems. Shaded boxes without frame represent
components which are automatically generated and slim ar-
rows show the generation of artefacts (specifications, proofs
and code).

As we can see in the diagram, the file system implemen-
tor must provide four distinct components: ¬ A high level
specification of file system functionality, ­ a specification
of the in-program and on-medium data layout in our data-
description language, DDSL, ® the implementation of the
control code in our control-description language, CDSL, and
¯ the proof that the generated Isabelle low level specifica-
tion corresponds to the functional specification.

Note that steps ­ and ® alone guarantee the absence of
many programming errors common in file systems. How-
ever, step ¯ is what guarantees the functional correctness of
the resulting file system.

The framework uses the DDSL description to generate
(1) a high-level Isabelle specification of the data structures
and the serialisation and de-serialisation functions, (2) the
corresponding CDSL code and (3) the proof showing that
the latter is a valid implementation of the former. Both the
generated and hand-written CDSL code combined are then
used to generate (1) a low-level Isabelle specification of
the file-system control code including the DDSL-generated
(de-)serialisation code, (2) the C code implementing the
specification and (3) the correctness proof for this imple-
mentation with respect to the low-level specification.

For now, we assume that we have suitable implementa-
tions and correctness proofs for the abstract data structures
used in the file system, such as lists, arrays, finite maps
and buffers, with operations to search, alter, and iterate over
these structures without using arbitrary loops or recursion
in the client. The design of CDSL depends on iterators and
collection-oriented operations, as the control language in-
tentionally does not allow recursion or arbitrary loops. A
Turing-incomplete language is key to keeping the code and
proof generation tractable.

3. Modular file system design and verification
Modularity generally has many benefits, including fostering
re-use and reducing life-cycle cost. This applies to verifica-
tion just as well as to programming. File systems are natu-

FsOperations

ObjectStore

Index UBI

WriteBuffer

FreeSpaceManager

GarbageCollector

Figure 2. Modular decomposition of BilbyFs

rally amenable to modular decomposition — all Linux file
systems exhibit a similar structural composition [Lu et al.
2013], aimed at supporting a separation of concerns.

To drive the design and implementation of our frame-
work, we designed a modular flash file system. BilbyFs is
meant to be on par with mainstream flash file systems such
as JFFS2 and UBIFS. It is built on top of the flash abstrac-
tion layer UBI and designed to live underneath the virtual
file system layer with which it interacts through the virtual
file system switch (VFS).

The design of BilbyFs is highly modular. To allow com-
positional verification we make sure that components com-
municate through well-defined interfaces. For the initial pro-
totype of BilbyFs, we trade design flexibility for verification
simplicity by avoiding complex component interactions in-
volving callbacks. It remains to be seen how this trade-off
will change over time, especially in later design iterations
of the file system when we will have to reconcile this restric-
tion with the need to implement asynchronous I/O to achieve
acceptable performance.

Figure 2 shows the design of BilbyFs. The FsOperations
component implements the interface expected by the VFS,
as a client of the ObjectStore component. ObjectStore pro-
vides a uniform API for storing arbitrary objects on flash,
which FsOperations uses to implement file system objects
such as inodes, directory entries and data blocks. This de-
composition confines the key file system logic to FsOper-
ations, and makes that component independent of the on-
medium representation.

ObjectStore relies on three more components: the Index,
which stores the on-medium address of each object, the free
space manager (FreeSpaceManager), which keeps track of
free space, and the write buffer (WriteBuffer), which al-
lows multiple objects to be atomically written to disk. Write-
Buffer’s implementation itself relies on the UBI layer to pro-
vide reliable block read, write and erase operations on flash.
Finally, the garbage collector (GarbageCollector), which in
turn depends on the free space manager, maximises the
space available for the ObjectStore component. Normally
GarbageCollector runs concurrently with file system oper-
ations. Since this first version of our verification technology
does not yet support reasoning about concurrency, the cur-
rent design invokes the garbage collector between file sys-
tem operations.

In its current design, BilbyFs does not store the index on
flash. Instead, similarly to JFFS2, it scans the medium at
mount time to rebuild the index in memory. This restriction
limits the maximum size of the physical medium for which
this design is likely to be practical to a few gigabytes. Ad-
dressing this limitation is possible without radically chang-
ing our approach, and is an obvious future extension, but will
increase the size of the implementation and the manual proof
effort.

Each file system component is implemented in CDSL,
from which its low-level Isabelle specification is generated.
This specification is very similar to the input CDSL code, so
while the manual proof (¯ in Figure 1) must show that these
machine-generated specifications implement the high-level
specification of file system functionality, the automatic syn-
thesis of these specifications does not create any additional
problems for the manual verification.

4. Code and Proof Generation
4.1 Control Code Language CDSL
CDSL is a simple, monomorphic, first-order, functional lan-
guage with linear types [Wadler 1990], and a Haskell-like
syntax. We kept all the restrictions of a strongly-typed,
purely functional language: no implicit side effects or de-
structive updates and no untyped expressions, while omit-
ting most features which make functional languages power-
ful: higher-order functions, partial application, recursion.

Most systems code, and in particular file-system code,
uses only limited forms of repetition, iterating over data
structures. In our framework, such iteration is encapsulated
by a single control structure, which visually resembles a for
loop. This structure is parameterised by iteration schema,
loop patterns which are known to terminate, and can be
supplied by separately verified ADTs. Thus, we can get away
without recursion in the language.

Furthermore, linear type systems enforce that values are
used exactly once, making it impossible to write functions
which create, copy or discard linear values. Such operations
can only be performed by primitives in the language.

The restrictive nature of CDSL and its strong type system
facilitate generation of efficient code, and, more importantly,
proofs: the more we know about the code, the stronger the
assertions we can provide. For example, the linear type sys-
tem enables safe disposal of resources and limits the sharing
of references to statically well-behaved cases.

We ascribe two semantic interpretations to the same
control-code language. The first, value semantics, views
CDSL as a purely functional language with linear types, with
no notion of a mutable store. This semantics is useful for
our high-level functional correctness proof, as it is simpler
to reason about immutable, constant values than a mutable
heap that changes over time.

The second semantics, update semantics, is imperative in
nature: Values of linear type are represented by locations in

an abstract store where the data can be found. Updates to the
value — primitive functions which, in the value semantics,
appear to consume an old linear value and return a new
linear value — are now free to destructively update the
old value in the store. We can safely do that, because the
type system ensures that only one reference to the value
exists: destroying the old value will not result in unexpected
behaviour elsewhere in the system. The update semantics
is useful because it is close to the semantics of the C code
generated by the CDSL compiler.

Our type system characterises a subset of programs for
which the two semantics coincide. We expect to prove the
following generic refinement theorem: for any type-correct
program p, p evaluated under the update semantics will be a
refinement of p evaluated under the value semantics.

We adopt existing Isabelle/HOL frameworks for giving
semantics to the generated C code [Tuch et al. 2007, Green-
away et al. 2012]. The update semantics is relatively close
to the typed-heap model of C produced by recent versions
of Greenaway et al.’s framework [Greenaway et al. 2012].
We hope to exploit this similarity to simplify the generation
of proofs showing the correspondence between a program’s
update semantics and the semantics of its generated C code.
Combined with the generic refinement theorem, these will
show that the generated C code correctly implements the
program’s value semantics.

4.2 Data Description Language DDSL
DDSL specifies physical (on-medium) data layouts and syn-
thesises correct CDSL code for serialising in-memory data
structures to physical representation and de-serialising back.
There are numerous data-description tools [McCann and
Chandra 2000, Back 2002, Fisher et al. 2010] that perform
similar tasks, some of them, like those in the PADS family,
have been the subject of pen-and-paper correctness proofs.
Our ambition goes well beyond: our tool will not only pro-
duce code, but also mechanically checked Isabelle specifica-
tions and correctness proofs for the generated CDSL code.

We base DDSL on PADS [Fisher and Walker 2011], ex-
tended with support for bitfields and tagged unions, inspired
by Cock [2008]. While PADS data specifications can contain
arbitrary user-provided constraints on values, we limit con-
straints to built-in boolean expressions defined in DDSL, as
we generate both Isabelle and CDSL code from the DDSL
specification.

The generated CDSL code includes datatype declarations
for in-program data representation as well as corresponding
serialisation and de-serialisation functions, including error
checking.

As a simple example, the following DDSL snippet de-
scribes physical data consisting of one byte “a” directly fol-
lowed by a little-endian 32-bit word “b”:

data SObj = { a :: Pu8, b :: Ple32 }

From this the DDSL compiler generates structure and
function definitions in CDSL, which for this example com-
prise about 20 source lines of code (SLOC), and whose pro-
totypes are given here (Buf is a buffer ADT defined else-
where):

SObj = {a : #U8, b : #U32}

sobj_new : (#U8, #U32) -> .SObj + ()

sobj_free : .SObj -> ()

sobj_deser : (*Buf!, #U32) -> (.SObj, #U32) + ()

sobj_ser : (*SObj!, .Buf, #U32)

-> (.Buf, #U32) + (.Buf, #U32)

The first line declares a type, SObj, to be a record con-
taining two (unboxed) integers, of size 8- and 32-bits respec-
tively. The second and third lines declare functions for cre-
ating and destroying SObjs respectively. A preceding dot, as
in .SObj, denotes a value of linear type, # a value of un-
boxed type, and * a read-only (shareable) value. The trail-
ing ! with a preceding *, as in *Buf!, indicates a “deep”
read-only value (i.e. one whose fields are also read-only
if it is a record). The +s indicate those functions that can
potentially throw an error and are discussed later in Sec-
tion 4.3. The fourth line declares the deserialisation func-
tion sobj deser, which takes a buffer pb to deserialise
from the given index pos, and on success, returns a newly-
allocated SObj. Lastly, the serialisation function sobj ser

is declared to take a reference p to a read-only SObj to be se-
rialised, and a buffer pb to serialise to at the given index pos.

DDSL will also generate Isabelle specifications which
capture the correctness of the generated CDSL code in
a parsing relation, which connects the physical and in-
program data representations. This relation forms the cen-
trepiece of the formal DDSL semantics. In this example, a
parsing relation SObjR p pb pos would be generated, which
relates SObj structures p to their corresponding serialised
representation in a buffer pb at position pos .

The generated correctness lemmas for the CDSL func-
tions would assert that they establish the parsing relation be-
tween the physical and in-program data representations. The
correctness lemmas for the SObj example would include:

case (sobj deser pb pos) of OK (p, pos ′)⇒ SObjR p pb pos

case (sobj ser p pb pos) of OK (pb′, pos ′)⇒ SObjR p pb′ pos

The first says that that, if successful, sobj deser pb pos
gives a resulting SObj that corresponds to the contents in the
given position pos in the given buffer pb. The second says
that, if successful, sobj ser p pb pos gives a buffer pb′

and index pos ′ such that the contents at position pos in pb′

corresponds to the given SObj p.
The generated code, and thus its proofs, are relatively

straightforward. The problems here (e.g. of reasoning about
bitfield operations [Cock 2008, Cohen et al. 2009]) are rela-
tively well understood and we expect this part of the project
to yield early results.

4.3 Error Handling and Effects
As mentioned earlier, a large part of the control code of file
systems is concerned with error handling. Often, a transac-
tional style is employed for error cases, where functions re-
turn an integer code that indicates whether they have exe-
cuted successfully or encountered an error. If the code indi-
cates failure, the caller must unwind its previous actions –
in particular, releasing any allocated space. A large amount
of file system bugs arise from failure to appropriately handle
error cases [Lu et al. 2013].

To solve this problem, we make it impossible to ignore
the possibility of errors being returned from the function,
by modelling functions that can fail as returning a sum type
of the form (τ0, . . . , τn) + (τ ′0, . . . , τ

′
m), which describes

a function returning a collection of values each of type τi
respectively in case of success, and in case of failure an error
code (not explicitly listed in the type) and a collection of
values each of type τ ′i respectively.

The type ensures that the caller must handle the error case
in order to get the return value. For instance, recall that the
function sobj new takes an 8- and a 32-bit integer as its ar-
guments, and returns an SObj. If it fails, it only returns an
error value, so its return type is given as .SObj + (). To
access the SObj, the caller must handle the potential error.
In contrast, the function sobj free returns nothing and the
type indicates that it always succeeds, so no error handling
code is necessary. The serialisation and deserialisation func-
tions can each yield errors, for instance when called with a
buffer that is too short.

To gain an intuition of how this works, consider the fol-
lowing CDSL code, which tests the SObj serialisation and
deserialisation operations.

sobj_example (buf : .Buf) : (.Buf) + (.Buf) = {

so <- sobj_new(0, 666)

handle (err) { fail (err,buf) };

buf, new_pos <- let! (so) sobj_ser(so, buf, 0)

handle (err, buf, idx) {

sobj_free(so);

fail (err,buf)

};

so2, new_pos’ <- let! (buf) sobj_deser(buf, 0)

handle (err) {

sobj_free(so);

fail (err,buf)

};

let! (so,so2)

assert (not(so.a == so2.a && so.b == so2.b &&

new_pos == new_pos’));

sobj_free(so2); sobj_free(so);

return (buf)

}

This code creates an object and checks that, after seri-
alising and deserialising it, its contents are identical to the
original. The function has type .Buf -> .Buf + .Buf, as

it takes a linearly-typed buffer as its sole argument, which
it returns on both success and error; in case of error it also
yields an error value. The code can be read as a sequence
of instructions, with left-arrows similar to assignments, pos-
sibly to multiple values at the same time if a function re-
turns more than one result, as for example sobj ser. Every
function that could potentially fail has an associated handler.
Here, the linear type system ensures that we free all objects
that we have allocated. Omitting any of the free statements
in this example would be a type error.

The error handling code is fairly verbose at the moment.
This can be alleviated easily in the future by adding syntactic
sugar for common cases.

The let!-statements, taken from Wadler [1990], allow a
value of linear type to be temporarily shared in a read-only
context. They make for instance the assertion condition in
the example well-typed, but they do not need to be present
in the generated C code.

Aside from side effects which only exist in the update
semantics of CDSL, such as destructive updates to the file
system state, we also have effects relating to the outside
environment, e.g. the OS and storage medium. These effects
are present in the value semantics as well, as we model the
outside world as a (collection of) linear values.

5. Summary
As alluded to in Section 1, we have the completed the design
of first versions of DDSL and CDSL and used them to
specify the initial design of BilbyFs, based on a hand-written
C prototype of the file system. While we do not expect major
changes to the languages at this point, more complicated
case studies planned for the future may lead to adjustments.
We are also planning to add more syntactic sugar to allow for
more concise expression of common patterns and idioms.

For DDSL we have a pen-and-paper formal specifica-
tion of the static semantics and have implemented the CDSL
code generation. We are currently working on the genera-
tion of Isabelle/HOL specifications and correctness proofs.
DDSL specifications are compact: small DDSL specifica-
tions encompass a large amount of CDSL code, usually
around 8 times as much. Since the generated code is simple,
we expect proof generation to be relatively straightforward.

We have formally defined both the value (in Is-
abelle/HOL) and update (with pen-and-paper) semantics of
CDSL, and proved type soundness, as well as the refinement
between update and value semantics for an earlier, more
complicated, design of the language. These should port eas-
ily to the current, simpler CDSL design. These are important
steps for showing the correctness of the generated C code.

We are currently generating (unverified) C code from
CDSL, to get some idea of how efficient the verified code
will be and where the trade-offs are.

The manual top-level proof of functional correctness (part
¯ in Figure 1) for BilbyFs, which makes the generated

lower-level specifications trustworthy, is in progress as well.
This proof currently uses manually-written lower-level Is-
abelle specifications of the file system components. These
will soon be automatically produced by the CDSL compiler,
via e.g. CDSL’s value semantics.

Based on our experience so far, we are confident that the
completely automatic generation of the code of a realistic
file system and the automated verification of the correctness
of its modules, is feasible.

References
G. Back. DataScript – a specification and scripting language for

binary data. In Conference on Generative Programming and
Component Engineering, pages 66–77. Springer, 2002.

T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static
driver verification with under 4% false alarms. In Proceedings
of the 2010 Conference on Formal Methods in Computer-Aided
Design, pages 35–42, Lugano, Switzerland, 2010. FMCAD Inc.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: using static analysis to find bugs in
the real world. Communications of the ACM, 53(2):66–75, Feb.
2010.

D. Cock. Bitfields and tagged unions in C: Verification through au-
tomatic generation. In B. Beckert and G. Klein, editors, Proceed-
ings of the 5th International Verification Workshop, volume 372
of CEUR Workshop Proceedings, pages 44–55, Sydney, Aus-
tralia, Aug. 2008.

E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise
yet efficient memory model for C. In Proceedings of the 4th
Systems Software Verification, volume 254 of Electronic Notes
in Theoretical Computer Science, pages 85–103. Springer, 2009.

K. Fisher and D. Walker. The PADS project: An overview. In
International Conference on Database Theory, pages 11–17.
ACM, 2011.

K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. Journal of the ACM, 57:10:1–10:51, Jan.
2010.

D. Greenaway, J. Andronick, and G. Klein. Bridging the gap: Auto-
matic verified abstraction of C. In L. Beringer and A. Felty, edi-
tors, 3rd International Conference on Interactive Theorem Prov-
ing, volume 7406 of Lecture Notes in Computer Science, pages
99–115, Princeton, New Jersey, Aug. 2012. Springer. ISBN 978-
3-642-32346-1.

W. Jannen, C.-C. Tsai, and D. E. Porter. Virtualize storage, not
disks. In Workshop on Hot Topics in Operating Systems, pages
1–7, Santa Ana Pueblo, NM, USA, May 2013.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification
of an OS kernel. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, Oct. 2009. ACM. doi: 10.1145/1629575.1629596.

X. Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A
study of Linux file system evolution. In USENIX Conference on
File and Storage Technologies, San Jose, CA, USA, Feb. 2013.

P. J. McCann and S. Chandra. PacketTypes: abstract specification
of network protocol messages. In ACM Conference on Commu-
nications, pages 321–333, Stockholm, Sweden, 2000.

N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller.
Faults in Linux: ten years later. In Proceedings of the 16th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 305–318, New-
port Beach, CA, USA, 2011.

S. Saha, J. Lawall, and G. Muller. An approach to improving the
structure of error-handling code in the Linux kernel. In Con-
ference on Language, Compiler and Tool Support for Embedded
Systems (LCTES), pages 41–50, Chicago, IL, USA, Apr. 2011.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation
logic. In M. Hofmann and M. Felleisen, editors, Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97–108, Nice, France, Jan.
2007. ACM.

P. Wadler. Linear types can change the world! In Programming
Concepts and Methods, 1990.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. ACM Transactions
on Computer Systems, 24:393–423, 2006.

	Introduction
	Overview
	Modular file system design and verification
	Code and Proof Generation
	Control Code Language CDSL
	Data Description Language DDSL
	Error Handling and Effects

	Summary

