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Abstract
The advent of formally verified OS kernels means that
for the first time we have a truly trustworthy foundation
for systems. In this paper we explore the design space
this opens up. The obvious applications are in security,
although not all of them are quite as obvious, for example
as they relate to TPMs. We further find that the kernel’s
dependability guarantees can be used to improve perfor-
mance, for example in database systems. We think that
this just scratches the surface, and that trustworthy ker-
nels will stimulate further research.

1 Introduction

Despite depending on computer systems for an increas-
ing part of our lives, we have grown used to them not
being particularly reliable. We seem to have accepted
hacked servers and virus-infected desktops as an in-
evitable part of life.

Where dependability is important, we go to (at times
extraordinary) lengths to reach some approximation of it.
For example, security evaluations under Common Crite-
ria [12], used primarily in national-security systems, rely
on expensive processes, and at the most thorough levels
also a degree of formal methods. However, even with
this very expensive approach, national security depends
in the end on testing and code inspection, which cannot
give any guarantees.

Increasingly we don’t even go that far, and instead
trust molochs such as Windows, SELinux or Xen, and
pretend this is fine as long as they sit behind a firewall.

In this paper we ask the following question: what
could we do differently if we could actually trust the sys-
tem, or at least its kernel? What new approaches, simpli-
fications, efficiency gains could such a kernel enable?

Only a short while ago this question would have been
considered hypothetical. This has changed with a few
key achievements. One is the formal proof of the func-

tional correctness of the implementation of the seL4 mi-
crokernel [13]. This showed that it is feasible to build
(small) systems which can be guaranteed never to oper-
ate out-of-spec. In particular, seL4 is provably immune
to such problems as code injection and privilege escala-
tion. Proofs of general security properties, such as en-
capsulation, are in progress [14]. It is also possible to
extend the guarantees it provides to a complete (albeit
small) trusted computing base (TCB) [1].

Another piece of the puzzle is a verified compiler [16],
which allows us to extend the correctness from the lan-
guage to the hardware boundary. This means for the first
time we can have a truly dependable software base for
systems, and it makes sense to ask what we can do with
it.

In the following we explore some areas of the design
space of dependable systems built on seL4. These are,
at present, mostly ideas, meant to stimulate further re-
search.1

2 Virtual machine encapsulation could be
trusted

These days, virtualization seems to be considered by
many the cure for all ills, especially security [5]. This
goes even to proposals to build a complete OS based on
a hypervisor [20], using virtual machines (VMs) to en-
capsulate individual activities. A cynical observer might
think that history is about to repeat itself, with hypervi-
sors taking the place of OSes, and VMs replacing pro-
cesses, only to end up at the same point in 10 years.

Somehow there seems to be a belief that a large code
base, such as Xen [3] with its 1 MLOC or so, suddenly
becomes trustworthy when it is called a hypervisor. Such
a belief is totally unfounded. A study of OpenBSD has
shown that 33 security vulnerabilities per MLOC were

1A public release of the kernel and its formal specification is avail-
able from http://ertos.nicta.com.au/software/seL4/.

1

http://ertos.nicta.com.au/software/seL4/


found over a period of seven years [19]. This, of course,
is a lower bound, as no-one knows how many vulnerabil-
ities were left undiscovered.

The NOVA project [22] addresses this by reducing the
TCB of a VM to 36 kLOC, a size where, with years of
maturation, it is likely that less then a handful of vulner-
abilities are left. This is a long wait, and at the end there
is still no certainty. Some commercial ARM-based hy-
pervisors are even smaller [7, 11, 17] and might shorten
the wait.

However, only a formally verified hypervisor, such as
seL4, can provide real security through virtualization,
and on that basis, a system like CubeOS [20] starts mak-
ing sense. Building it on a massive hypervisor such as
Xen produces a fortress built on sand.

3 Web browsing could be secure

Web browser security is a pressing problem in modern
end-user systems. An endless stream of exploits has af-
fected all major browsers and stimulated research into
secure browser architectures.

Secure rendering of web pages requires the browser
to enforce a security policy that restricts communication
among different web pages as well as different objects
inside a page. An important example is the same ori-
gin policy (SOP), which means that pages from different
sources cannot observe or alter each other’s state and be-
haviour. In addition, scripts running inside a web page
must be denied unauthorised access to OS resources, in-
cluding file systems and network interfaces.

In traditional browser architectures, implementation
of the security policy is scattered around the source
code of the browser, leading to numerous vulnerabilities.
Chrome [4], OP [8], and other recent browser implemen-
tations address this problem by encapsulating the secu-
rity policy in a separate module, the browser kernel. The
browser kernel starts an instance of the rendering engine
for each page in a separate process inside an OS sandbox.
Renderer processes can only access system resources and
communicate with each other indirectly, via the browser
kernel. This architecture ensures that a malicious web
page cannot bypass the security policy implemented by
the browser kernel.

The problem here is that this approach is still at the
mercy of the OS, which is in the browser’s TCB, and typ-
ically comprises tens of MLOC. A malicious web page
that manages to take over the renderer process can then
exploit a vulnerability in the OS to compromise the entire
system.

IBOS [23] recently demonstrated that the TCB of a
browser can be substantially reduced with a microker-
nel approach. IBOS is based on a modified version of
the L4Ka::Pistachio microkernel [15]. It uses a process
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Figure 1: Secure web browser architecture. Components
that belong to the TCB of the system are highlighted us-
ing grey shading.

per open web page, encrypted storage, individual net-
work stack instances per process, kernel-controlled se-
cure screen rendering and user-level device drivers to
minimise the TCB of the browser.

While this architecture presents a big step towards se-
cure web browsing, it can be further improved to pro-
vide formal security guarantees. Our proposed design is
shown in Figure 1. The trusted part of the system con-
sists of the verified, general-purpose microkernel and a
user-level security-monitor process. The monitor is re-
sponsible for instantiating browser processes with per-
missions to directly communicate only with their private
network stack processes and the monitor itself. Similarly
to the IBOS kernel, the monitor moderates communica-
tion between browser processes and implements packet
filtering, storage encryption, DMA buffer management,
and frame-buffer page mapping. The microkernel en-
sures that browser processes cannot violate constraints
on communication imposed by the security monitor; for
instance, that different browser processes cannot com-
municate directly, bypassing the monitor process.

This architecture can be extended to include a com-
plete OS stack running inside a VM, alongside the
browser, with isolation between browser tasks and the
VM being enforced by the security monitor.

The monitor is the only part of the TCB, apart from the
microkernel, that needs to be verified in order to formally
prove that the resulting system correctly implements its
security policy. The IBOS authors report that the imple-
mentation of the SOP policy in the Pistachio kernel is
less than 9 kLOC. This is within reach of modern verifi-
cation techniques [13, 14].

4 TPMs could be useful

The concept of a trusted platform module (TPM) [24]
has been introduced by the Trusted Computing Group
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(TCG) to enable secure boot [2], storage, authentication
and remote attestation. In particular, the remote attesta-
tion facility provides evidence that a system is running a
well-defined software configuration. This is achieved by
accumulating hashes (called measurements) of software
loaded into the system. TPMs are now widely available
on PCs and other platforms.

However, for end-user devices the TCG approach to
trustworthiness has been considered a failure [25]. There
are two main reasons:

• Having a well-defined software configuration is not
the same as having a trustworthy configuration [10].
In general, the software is still buggy, and the TPM
only guarantees that the system is executing known
(buggy) code rather than unknown (potentially ma-
licious) code. Furthermore, if a bug in the software
stack leads to loading code without prior measure-
ment, remote attestation will report a software stack
which differs from what is actually running on the
system.

• The TCG approach cannot reasonably deal with
the software variety and evolution common in real-
world systems. Every version of every component
in the TCB of the application produces a hash value
which has to be pre-calculated, stored and com-
pared against the actual value during attestation.
The TCB includes any piece of code which can
interfere with the operation of the application. If
the OS cannot be guaranteed to be free of exploits,
this necessarily includes every program loaded pre-
viously. Finally, the OS itself can be configured in
many different ways, thus producing an untractable
number of possible hash values.

As an example, consider a bank customer performing
financial transactions from their smartphone or home PC.
The attacks most likely to be successful are (1) phishing,
resulting in the theft of customer’s password or other au-
thentication details, and (2) malicious code injection. A
bank could completely rule out phished credentials from
being misused if it could ensure that bank transactions
originate from a specific machine (one of the client’s pre-
registered machines), and it could render malware harm-
less by rejecting any transaction which does not originate
from a trusted software stack running on the client’s ma-
chine. In theory, the TPM’s remote-attestation function-
ality enables the bank to do this.

In practice, the bank’s clients wants to configure their
PC or smartphone to their taste, including installing ar-
bitrary apps. Not only is the total number of apps too
large for the bank to manage, but many of them will not
be trustworthy and must therefore be kept out of the TCB
(and therefore the system).

Existing TCG-based solutions therefore try to manage
this problem by restricting the software stack, e.g. by al-
lowing the user to only run a specific Linux image with
a specific root file image and set of drivers, and only a
narrowly-defined set of applications. This forces the user
to boot into a specific banking-only OS environment that
only supports a limited range of hardware.

An alternative solution, known as dynamic root of trust
measurement (DRTM), allows the user to switch between
trusted and untrusted environments at runtime. To this
end, execution of the general-purpose untrusted OS is
suspended until the trusted code has finished running.
This is acceptable if the trusted code is small and self-
contained and only runs for fractions of a second [18],
which is not the case for online banking and other appli-
cations that require OS support.

Both of the above approaches effectively force the user
to boot up a complete banking OS and suspend their
own OS for every banking session. This is certainly not
acceptable to an average user who wants to be able to
switch back and forth instantly between the banking ap-
plication and their normal environment.

The solution to this problem consists of: (1) isolating
the TCB of the banking application from the rest of the
general-purpose OS, and (2) restricting the TCB to small
components that do not change, or only change rarely
and in a controlled fashion.

This calls for a formally verified kernel such as seL4.
Firstly, strong process-isolation guarantees provided by
seL4 eliminate most software from the TCB. Secondly,
a verified kernel changes rarely because no bug fixes are
ever necessary, and the hashes of the remaining changes
are manageable. Finally, verification can guarantee that
all TCB components are measured before execution, thus
ensuring that remote attestation is meaningful.

An implementation of this scenario runs seL4 as the
lowest-level software component, acting as a hypervisor
which runs a general-purpose OS in a virtual machine
(VM). Isolated in another VM runs the banking envi-
ronment. The banking VM has a verified loader (which
therefore changes rarely and predictably). It loads a min-
imal OS personality, which includes drivers for mouse,
keyboard and screen, as well as a crypto library. It also
manages SSL endpoints, and links them to the TPM [6].
This allows the untrusted network stack of the general-
purpose OS to be securely used for communication. On
top of the mini OS runs the banking application. The
TCB of the banking transaction changes rarely and is un-
der control of the bank. Seamless UI integration could be
achieved by secure sharing of the screen between VMs,
as in CubeOS [20].
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Figure 2: Database setup with virtual disk for buffering
writes.

5 Database costs could be reduced

Database systems (DBMSes) are designed to maintain
the ACID properties of transactions (atomicity, concur-
rency, integrity and durability) [9], despite faults in the
underlying system. These days, they typically rely on
RAID to protect them from disk failures, and a UPS pro-
tects from power failures. This leaves OS crashes as the
most important failure to protect against.

Protection against OS failures is typically done by
write-ahead logging: the DBMS records in an append-
only log the intended modifications to its state before
performing the actual state change. Persistence of the
log is critical: the DBMS relies on log data to survive
any system crash. This is done by blocking the com-
mit of a transaction until it is known that the log data is
safely recorded on persistent storage, typically by issuing
a sync system call after writing the log.

This means that log writes are performed syn-
chronously to transaction processing, putting disk write
operations on the critical path of transactions.

The sync could be avoided, and any I/O performed
asynchronously to transaction processing, if the DBMS
could depend on the underlying OS not to crash at in-
opportune moments. A formally verified kernel would
not crash, and thus a DBMS implemented to run directly
on seL4 could safely buffer log data in memory until it
has been written to disk asynchronously (and in larger
batches, reducing I/O costs). However, this would re-
quire a significant re-write of the lower layers of the
DBMS, and probably verification of much more code
than just the microkernel.

Virtualization allows us to achieve the performance
gains of asynchronous disk writes without a major re-
write. As shown in Figure 2, we can run an unmodified
DBMS inside a virtual machine. The guest OS under-
neath the DBMS is also unmodified, except that its disk
driver is replaced by a driver for a virtual storage device,
which is implemented in a second VM. The guest OS’s
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Figure 3: Comparison of different approaches to
database transaction logging.

driver communicates with the virtual device via seL4
IPC.

The virtual storage device buffers the log data in RAM
until it is written to a real disk, but the DBMS can con-
tinue processing transactions concurrently to the physi-
cal disk writes. The virtual device is simple enough to be
considered dependable after undergoing thorough qual-
ity assurance; it could be formally verified if needed.

This setup can also protect against power failures if no
UPS is available: The buffer in the virtual disk can be
limited to a size which can safely be written to disk if a
power failure is detected. Our measurements show that
capacitances in standard server power supplies support
system operation for more than 100 ms after mains power
is lost, enough to write 1.5MiB of data.

The physical disk driver requires a bit of special con-
sideration in this case: the DBMS depends on that driver
not crashing while there is still log data to be written. The
driver can be kept quite simple, as it only needs to sup-
port a minimal set of configuration and data transfer op-
erations required for writing the database log (a separate
driver can be used for database recovery). An appealing
approach is synthesising the driver automatically [21],
making it correct by construction.

Some initial data showing that this approach can in-
deed increase transaction throughput is shown in Fig-
ure 3. It compares transaction latency of MySQL run-
ning on virtualized Linux (Wombat) on seL4. “Physical”
refers to Linux using a native driver to directly access the
disk, “physical without sync” is the same setup but with
I/O synchronisation suppressed at the end of the trans-
actions. “Virtual disk” refers to the setup of Figure 2
where the Linux writes are buffered and written asyn-
chronously. The graph shows that the latter two cases
have about the same performance, yet the “physical with-
out sync” setup sacrifices database durability in order to
achieve this performance gain, while the “virtual disk”
setup does not.
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6 Conclusions

We have made a case that a formally verified OS kernel
opens up new possibilities for system security. Some of
the opportunities we discussed are being pursued already,
although on top of platforms of dubious trustworthiness.
As such, they can create an incorrect illusion of security,
which can actually be worse than a well-understood lack
of security. A verified, and thus really trustworthy, OS
kernel can provide real security.

Besides these more obvious use cases, the trustwor-
thy kernel opens up new opportunities. One is to make a
TPM practically useful, via a system architecture which
leverages the TPM for attestation but supports configu-
ration changes and software evolution. Another one is to
use the kernel’s dependability guarantees to buy perfor-
mance, by eliminating costly synchronous logging oper-
ations in databases.

In summary, the existence of a verified OS kernel has
opened up new regions in the design space for systems.
We are confident that we have only thought of a fraction
of those, and encourage the research community to con-
tribute more.
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