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Abstract

We develop a practical solution to the problem of auto-
matic verification of the interface between device drivers
and the operating system. Our solution relies on a com-
bination of improved driver architecture and verification
tools. Unlike previous proposals for verification-friendly
drivers, our driver development and verification method-
ology supports drivers written in C and can be imple-
mented in any existing OS. Our Linux-based evalua-
tion shows that this methodology amplifies the power of
existing model checking tools in detecting driver bugs,
making it possible to verify properties that are beyond
the reach of traditional techniques.

1 Introduction

Faulty device drivers are a major source of operating
system (OS) failures [12, 6]. Recent studies of Win-
dows and Linux drivers show that over a third of driver
bugs result from the complex interface between driver
and OS [19, 2]. The OS defines complex rules on the
ordering and arguments of driver invocations, rules that
often are neither well documented nor are stable across
OS releases. Worse, the OS can invoke driver functions
from multiple concurrent threads, and so driver devel-
opers must implement complex synchronisation logic to
avoid races and deadlocks.

Automatic verification has proved useful in detect-
ing OS interface violations in device drivers. Re-
search on automatic driver verification has followed
two main avenues. The first avenue, represented by
tools like SLAM [2], Terminator [8], SATABS [7], and
Blast [13] focuses on verifying existing Windows and
Linux drivers. Despite significant effort invested in im-
proving these tools, they remain limited in the complex-
ity of properties that can be efficiently verified without
generating a large number of false positives.

The second line of research, represented by the Singu-

larity [10] and RMoX [3] OSs, focuses on making drivers
more amenable to automatic verification via improved
software architecture. In this architecture each driver has
its own thread and communicates with the OS using mes-
sage passing, which makes the driver control flow and its
interactions with the OS easier to understand and anal-
yse. We refer to such drivers asactive drivers, in con-
trast to conventional,passive, drivers that are structured
as collections of entry points invoked by OS threads.

Singularity and RMoX rely on OS and language sup-
port for improved verifiability. They are both process-
based OSs, where all system components (not just de-
vice drivers) communicate via message passing. Driver
development requires getting to grips with new pro-
gramming languages that provide first-class support for
message-based communication and formal specification
and verification of communication protocols.

In this paper we show that the benefits of active drivers
can be achieved while writing drivers in familiar C for a
conventional OS. To this end, we present an implemen-
tation of an active driver framework for the Linux kernel.
The framework does not require any modifications to ex-
isting kernel code and allows active drivers to co-exist
with conventional drivers.

We develop a new verification method that enables
efficient, automatic checking of active driver protocols.
Our method leverages existing verification tools for C,
extended with several novel optimisations geared to-
wards making active driver verification tractable. Like
other existing automatic verification techniques, the
method is not complete—it helps to find bugs, but does
not guarantee their absence.

Through experiments involving verification of sev-
eral complex drivers for Linux, we demonstrate that our
driver design and verification methodology amplifies the
power of verification tools in finding driver bugs. In par-
ticular, many properties that are hard or impossible to
verify in conventional drivers can be easily checked on
active drivers.



2 Passive vs active drivers

In this section we argue that the active driver architecture
should be the preferred one for modern OSs. To this end,
we discuss the shortcomings of the conventional driver
architecture and show how active drivers address these
shortcomings.

2.1 Passive drivers
The passive driver architecture supported by all main-
stream OSs suffers from two problems that complicate
verification of the driver-OS interface:stack rippingand
concurrency.

Stack ripping A passive device driver comprises
a collection of entry points invoked by the OS. When
writing the driver, the programmer makes assumptions
about possible orders in which its entry points are go-
ing to be activated. These assumptions are not explicit
in the driver source code and can only be discovered
by combining the driver with a hand-written model of
the OS kernel that systematically generates all possible
sequences of driver invocations [2]. This phenomenon,
when the control flow of the program is scattered across
multiple entry points and cannot be reconstructed from
its source code is known as stack ripping [1].

Building accurate OS models has proved difficult, as
even OS designers often lack a good understanding of
what driver-OS interactions are allowed in practice [2].

Even in the presence of an accurate OS model, analy-
sis of the driver control flow can be tricky. The following
code fragment, showing two driver entry points, illus-
trates the problem:

int suspend (){ dev_suspend (); free(p);..}

void unplug (){..p->data =0;..}

This code incorrectly assumes that theunplug() entry
point cannot be called aftersuspend() and therefore it
is safe to deallocate pointerp insidesuspend().

The bug can be discovered with the help of an OS
model that simulates, among others, the problematic
sequence of invocations and by using pointer analysis
to detect the use-after-free pattern on pointerp. This
approach does not scale well, because pointer analy-
sis quickly gets intractable for code involving complex
pointer manipulation.

In this example theroot causeof the bug—the fact
that the driver does not expectunplug() to happen af-
ter suspend()—is implicit in the source code of the
driver. Instead we can only detect the bug’s indirect con-
sequence, e.g., an invalid pointer dereference.

Concurrency The OS can invoke driver entry points
from multiple concurrent threads, forcing driver develop-
ers to implement complex synchronisation logic to avoid
races and deadlocks. To detect concurrency bugs, the

OS model used in driver verification must be extended
to simulate the multithreaded environment of an OS ker-
nel [20]. Even with such a model, concurrent verification
is far less scalable than sequential verification, as thread
interleaving leads to dramatic state explosion.

Case study We demonstrate the adverse effects of stack
rippping and concurrency on driver verification through
a real-world case study involving the Linux driver for
the RTL8169 Ethernet controller. We analyse the his-
tory of bug fixes made to this driver, and identify those
fixes that address OS interface violation bugs, where the
driver incorrectly responds to certain sequences of OS
requests. We found 12 such bugs. We apply SATABS, a
state-of-the-art model checker for C, to detect these bugs.
SATABS has been successfully applied to Linux drivers
in the past [20]. In this paper, we also use it for anal-
ysis of active drivers and, as reported in Section 6, this
enables efficient, automatic verification of RTL8169 and
other drivers. Using SATABS as a model checker for both
active and traditional drivers provides a fair comparison.

Detecting driver bugs with SATABS requires a model
of the OS. We built a series of such models of increas-
ing complexity so that each new model reveals additional
errors but introduces additional execution traces and is
therefore harder to verify. This way we explore the best-
case scenario for the passive driver verification method-
ology: using our knowledge of the error we tune the
model for this exact error. In practice more general and
hence less efficient models are used in driver verification.

In addition, to make sure that our study is not biased,
we optimised our OS models for the best SATABS perfor-
mance. To this end we analysed spurious counterexam-
ples generated by SATABS and restructured the models
to avoid such counterexamples or added static predicates
to eliminate the counterexamples whenever possible (see
Section 4 for more details on SATABS).

Our initial model is purely sequential. It generates one
call to a driver entry point at a time and waits for the invo-
cation to complete before choosing the next entry point
to call. By gradually improving this simple model, we
were able to find 7 out of 12 bugs within 5 minutes each.

The remaining errors are race conditions that are only
triggered by concurrent driver invocations. In order to
model concurrency while minimising state explosion, we
simulate a limited form of concurrency where driver en-
try points can be invoked in a nested fashion whenever
the driver calls an OS callback. While this simplified
concurrency model is powerful enough to trigger the re-
maining 5 errors, SATABS was only able to find one of
them before being interrupted after 12 hours.

This analysis illustrates that (1) building an accurate
OS model suitable for driver verification is a difficult
task, and (2) an accurate OS model can be prohibitively
expensive to verify.
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2.2 Active drivers

In contrast to passive drivers, an active driver runs in
the context of its own thread or threads. Communica-
tion between driver threads and other OS threads occurs
via message passing. The OS sends I/O requests and in-
terrupt notifications to the driver using messages. A mes-
sage can carry a payload consisting of a number of typed
arguments, determined by themessage type. When the
driver is ready to receive a message, it performs a block-
ing wait specifying one or more message types that it can
accept in the current state. It notifies the OS about a com-
pleted request via a reply message. Hence, the order in
which the driver handles and responds to OS requests is
defined explicitly in its source code and can be analysed
without requiring an OS model and without running into
state explosion due to thread interleaving.

Active driver framework We present our instantiation
of the active driver architecture. Our design is based on
the Dingo active driver framework for Linux [19], im-
proving upon it in two ways. First, Dingo’s message
passing primitives are implemented as C language ex-
tensions. In contrast, our framework supports drivers in
pure C. Second, Dingo does not support automatic driver
protocol verification.

In our framework, the driver-OS interface consists of
a set ofmailboxes, where each mailbox is used for a
particular type of message. The driver exchanges mes-
sages with the OS viaEMIT andAWAIT primitives, that
operate on messages and mailboxes. TheEMIT function
takes a pointer to a mailbox, a message structure, and a
list of message arguments. It places the message in the
mailbox and returns control to the caller without block-
ing. TheAWAIT function takes references to one or more
mailboxes and blocks until a message arrives in one of
them. It returns a reference to the mailbox containing
the message. A mailbox can queue multiple messages.
AWAIT always dequeues the first message in the mailbox.
This message is accessible via a pointer in the returned
mailbox.

An active driver can consist of several threads that han-
dle different activities. For example, our active driver
for a SATA controller (see Section 5) creates a thread
per SATA port. Each driver thread registers one or more
message-based interfaces, along with associated proto-
cols, with the OS. This allows us to verify protocol com-
pliance for each thread in isolation. In doing so, we
ignore potential race conditions and deadlocks between
threads inside the driver. This is acceptable, as our goal
is bug finding and not complete formal verification.

Previous research [19] has shown that active drivers
can benefit from cooperative thread scheduling. The per-
formance of most drivers is bound by I/O bandwidth
rather than CPU speed, therefore they do not require

1mb=AWAIT(suspend ,unplug ,..);

2if (mb== suspend) {

3 dev_suspend ();

4 free(p);

5 EMIT(suspend_complete ,msg);

6 //Bug! Uncomment to fix

7 mb=AWAIT(resume /*,unplug */);

8 ...

9} else if (mb== unplug) {

10 p->data = 0;

11 ...

12}
(a) Faulty code

(b) Protocol

Figure 1: Active driver code with a bug similar to the one
in the example in Section 2 and the matching protocol
specification.

true multiprocessor parallelism. Cooperative schedul-
ing limits the number of possible thread interleavings,
making drivers easier to write and simplifying verifica-
tion of properties involving multiple threads. Our frame-
work supports cooperative scheduling of threads within
a driver (however, driver threads are scheduled preemp-
tively with respect to other drivers and the rest of the
kernel). In the future the framework can be easily ex-
tended to enable preemptive scheduling for those drivers
that can take advantage of true parallelism.

Example We use an example to illustrate how the ac-
tive driver architecture facilitates driver development and
verification. Figure 1(a) shows a fragment of driver code
that matches the example of a driver bug in Section 2.1.

In Figure 1,suspend, unplug, suspend complete,
andresume are pointers to driver mailboxes. In line 1 the
driver waits for both suspend and unplug requests. After
receiving a suspend request (checked by the condition at
line 2) the driver puts the device in a low-power mode
(line 3), deallocates pointerp (line 4) and notifies the OS
about completion of the request by sending a message to
thesuspend complete mailbox (line 5). It then waits
for a resume request at line 7.

This implementation has an equivalent bug to the one
found in the passive version of the driver: it does not
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handle hot-unplug notifications after receiving a suspend
request. A correct implementation must wait on both
resume andunplug mailboxes at line 7. Otherwise the
driver can deadlock waiting for aresume message that
never arrives.

In the active version of the driver, requests that the
driver accepts or ignores in each state are explicitly listed
in the driver source code. As a result, the root cause of
the bug can be discovered using control flow analysis,
without resorting to pointer analysis.

The code in Figure 1(a) is longer than the original pas-
sive implementation, because all OS interactions are ini-
tiated by the driver explicitly. In our experience, this ver-
bosity makes the logic of the driver easier to follow while
having only modest effect on the overall driver size.

3 Specifying driver protocols

This section presents our visual formalism for specifying
active driver protocols. The formalism is similar to pro-
tocol state machines of Dingo [19] and Singularity [10];
however it provides additional means to capture liveness
and fairness constraints, which enable the detection of
additional types of driver bugs.

The active driver framework associates a protocol with
each driver interface. The protocol specifies legal se-
quences of messages exchanged by the driver and the OS.

Protocols are defined by the driver framework designer
and are generic in the sense that every driver that imple-
ments the given interface must comply with the associ-
ated protocol. In the case when the active driver frame-
work is implemented within an existing OS, active driver
protocols are derived from the existing driver interface
supported by the OS. The framework includes wrapper
components that perform the translation between the na-
tive function-based interface and message-based active
driver protocols.

We specify driver protocols using finite state machines
(FSMs) with additional liveness and fairness constraints.
The protocol state machine conceptually runs in parallel
with the driver: whenever the driver sends or receives a
message that belongs to the given protocol, this triggers
a matching state transition in the protocol state machine.

Figure 1(b) shows a state machine for the protocol
used by the example driver, describing the handling of
power management and hot unplug requests. Each proto-
col state transition is labelled with the name of the mail-
box through which the driver sends (‘!’) or receives (‘?’)
a message.

We represent complex protocol state machines com-
pactly using Statecharts, which organise states into a hi-
erarchy so that several primitive states can be clustered
into a super-state. For example, theCONNECTED super-
state in Figure 1(b) groups four primitive states with a

common property that the?unplug transition is enabled
in all of them.

In some protocol states the OS is waiting for the driver
to complete a request. The driver cannot remain in such
a state indefinitely, but must eventually leave the state by
sending a response message to the OS. Such states are
calledtimedstates and are labelled with the clock symbol
in Figure 1(b).

In order to ensure that the driver does not deadlock in
anAWAIT statement, the developer must rely on an addi-
tional assumption that if the driver waits for all incoming
OS messages enabled in the current state, then one of
them will eventually arrive. This is a form ofweak fair-
nessconstraint [14] on the OS behaviour, which means
that if some event (in this case, arrival of a message) is
continuously enabled, it will finally occur. Not all proto-
col states have the weak fairness property. In the protocol
state machine, we show weakly fair states with dashed
border. For example, theSUSPENDED state in Figure 1b is
weakly fair, which guarantees that at least one ofresume

andunplug messages will eventually arrive in this state.
A protocol-compliant device driver must obey the fol-

lowing 5 rules.

Rule 1. (EMIT) The driver is allowed to emit a message
to a mailbox iff this message triggers a valid state tran-
sition in the protocol state machine.

The next rule ensures the driver does not ignore an in-
coming message forever.

Rule 2. (AWAIT) When in a state where there is an en-
abled incoming message, the driver must eventually is-
sue anAWAIT on the corresponding mailbox or transition
into a state where this message is not enabled.

Rule 3. (Deadlock-freedom) AllAWAIT operations even-
tually terminate.

To show that Rule 3 holds for anAWAIT statement,
one must check that at this point in the programat least
oneprotocol of the driver is in a weakly fair state and
theAWAIT waits for all enabled messages of this proto-
col. This check requires simultaneous consideration of
all driver protocols. For efficiency reasons we want to be
able to verify one protocol at a time. Therefore, we re-
place Rule 3 with the weaker rule, which does not guar-
antee deadlock freedom, but detects most deadlocks in
practice:

Rule 3’. For each protocol of the driver and for each
AWAIT operation, if theAWAIT waits for at least one mes-
sage of this protocol, it waits for all of its messages en-
abled in the current state.

Rule 4. (Timed) The driver must not remain in a timed
state forever.
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Figure 2: Example of a protocol with a strongly fair tran-
sition (shown with a double arrow).

Rule 5. (Termination) When the main driver function re-
turns, the protocol state machine must be in a final state.

Note that Rule 5 does not require that every driver run
terminates, merely that if it does terminate then all pro-
tocols must be in their final states.

Rules 1, 3 and 5 describesafetyproperties, whose vi-
olation can be demonstrated by a finite execution trace.
Rules 2 and 4 arelivenessrules, for which counterexam-
ples are infinite runs. Rule 2 is violated by an infinite
run which, after a finite number of steps, reaches a point
where an incoming messagem is enabled, and remains
enabled in all subsequent steps, but is never waited for
by the driver. Rule 4 is violated by an infinite run if, after
a finite number of steps, the protocol state machine en-
ters a timed state, and then remains in that timed state in
all subsequent steps.

Checking liveness properties often requires making
further assumptions on the OS behaviour. Figure 2 il-
lustrates this using a fragment of the SATA driver pro-
tocol. According to this protocol, the driver can send
a host activate message to the OS, which responds
with a host activate cmpl message. While handling
the host activate request, the OS can issue one or
moreport start requests to the driver. The OS guar-
antees that thehost activate cmpl message is even-
tually received if the driver keeps waiting for it in-
finitely often in theACTIVATING state. This ensures
that the driver does not get stuck in the loop between
ACTIVATING andPORT STARTING states forever. This
type of fairness, where some event is guaranteed to hap-
pen as long as it is enabled infinitely often (but not nec-
essarily continuously), is calledstrong fairness[14]. The
strongly fair transition is marked with double arrows in
the state diagram.

4 Verifying driver protocols

Active driver architecture opens the way to more efficient
verification of driver protocols. This section outlines the
challenges that had to be overcome to achieve this and
the resulting verification methodology.

The goal of driver protocol verification is to check
whether the driver meets all safety and liveness require-
ments assuming fair OS behaviour. We use two tools
to this end: SATABS [7], geared towards safety analy-
sis, and GOANNA [11], geared towards liveness analy-

sis. These tools provide complementary capabilities that,
when combined, enable full verification of driver proto-
cols. Given an active device driver and the set of pro-
tocols it implements, we use SATABS to check safety
rules 1, 3, and 5 and GOANNA to check liveness rules 2
and 4. This combination works well in practice, yielding
a low overall false positive rate.

Our methodology is compatible with other similar
tools. We use SATABS and GOANNA because our team
is familiar with their internals and has the expertise re-
quired to implement novel optimisations to improve per-
formance on active driver verification tasks.

4.1 Checking safety

SATABS is an abstraction-refinement based model
checker for C and C++ for checkingsafetyproperties.
It is designed to perform best when checking control-
flow dominated properties with a small number of data
dependencies. Active driver protocol-compliance safety
checks fall into this category.

Given a program to verify, SATABS iteratively com-
putes and verifies its finite-state abstraction with respect
to a set of predicates over program variables. At each it-
eration it either terminates (by discovering a bug or prov-
ing that the program is correct) or generates a spurious
counterexample. In the latter case, the counterexample
is analysed by the tool to discover new predicates, used
to construct a refined program abstraction. Abstraction
and refinement are both fully automatic.

We use a simple driver protocol shown in Figure 3a
and a fragment of driver code that implements this pro-
tocol in Figure 3b as a running example to illustrate the
use of SATABS.

SATABS verifies program properties expressed as
source code assertions. We encode rules 1 and 3’ as
assertions embedded in modified versions ofAWAIT and
EMIT. Figure 3c shows the driver code withAWAIT and
EMIT functions encoding Rule 1 inlined. These functions
keep track of the protocol state using the globalstate

variable. TheAWAIT function simulates the receiving of
a message by randomly selecting one of incoming mail-
boxes enabled in the current state (line 5) and updating
the state variable based on the current state and the mes-
sage selected. Theassume(0) statement in line 11 tells
SATABS that this branch can never be reached; hence no
other messages are allowed by the protocol.

Similarly, theEMIT function updates the state variable
based on the current state and the message being sent.
It contains an assertion that triggers an error when the
driver is trying to send a message that is not allowed
in the current state. Note that them3==m3 tautology in
line 16 is a result of inlining the body ofEMIT, which
compares its first argument againstm3.
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1 mbox_t *m;

2m = AWAIT(m1 ,m2);

3if(m==m1) {

4 EMIT(m3 ,msg);

5}

(a) Driver protocol (b) Driver source code

1/* initial state */

2 int state =1;

3 mbox_t *m;

4// AWAIT{

5 m=random_mb(m1 ,m2);

6 if(state ==1&&m==m1)

7 state =1;

8 else

9 if(state ==1&&m==m2)

10 state =2;

11 else assume (0);

12//}

13if(m==m1) {

14 //EMIT{

15 /*m3 in state 1*/

16 if(m3==m3&& state ==1)

17 state =2;

18 else

19 assert (0);

20 //}

21}

1

2p1=1;

3

4

5p2=*;

6if(p1&&p2)

7 p1=1;

8 else

9if(p1&&!p2)

10 p1=0;

11else assume (0);

12

13if(p1) {

14

15

16 if(true&&p1)

17 p1=0

18 else

19 assert (0);

20

21}

(c) Driver withAWAIT andEMIT
functions inlined.

(d) Abstraction w. r. t.
predicatesp1 andp2

1 int state =1;

2m=random_mb(m1 ,m2);

3if (state ==1&&m==m1) {

4 state =1;

5 EMIT(m3 ,msg);

6} else if(state ==1&&m==m2) {

7 state =2;

8} else assume (0);

(e) Driver code after CFG transformation (with theEMIT
function body collapsed).

Figure 3: Safety verification example

To verify rule 5, we append to the driver’s main func-
tion a check to ensure that, if the driver does terminate,
the protocol state machine is in a final state.

In our running example, the abstraction refine-
ment loop terminates after discovering predicatesp1 ≡

(state== 1) and p2 ≡ (m== m1). The abstraction of
the program in Figure 3c with respect to these two predi-
cates is shown in Figure 3d. The abstract program has the
same structure as the concrete one; however it only keeps
track of the predicate variables, abstracting away the rest
of the driver state. Using this pair of predicates (but not

any one them separately), SATABS is able to verify that
this abstract program can not trigger the assertion; hence
the original concrete program is correct with respect to
the safety property being checked.

Our preliminary experiments show that straightfor-
ward application of SATABS to active drivers results in
very long verification times. This is in part due to the
complexity of driver protocols being verified and in part
because predicate selection heuristics implemented in
these tools introduce large numbers of unnecessary pred-
icates, leading to overly complex abstractions. The prob-
lem is not unique to SATABS. Our preliminary expe-
rience with SLAM, another state-of-the-art abstraction-
refinement tool produced similar results.

We describe several novel strategies that exploit the
properties of active drivers to make their safety verifica-
tion feasible. We believe that these techniques will also
be useful in other software protocol verification tasks.

Protocol decomposition The abstraction-refinement
technique is highly sensitive to the size of the property
being checked. Complex properties require many pred-
icates. Since verification time grows exponentially with
the number of predicates, it is beneficial to decompose
complex properties into simple ones that can be verified
independenly.

We decompose each driver protocol state machine into
a set of much simpler subprotocols as a preprocessing
step. Every subprotocol captures a simple rule derived
from the main protocol.

For instance, given the protocol in Figure 1(b), we
can define, among others, the following rules, related
to the unplug message: (1) the driver must be pre-
pared to handle theunplug message at any time; (2)
the driver must respond to theunplug message by send-
ing unplug complete to the OS. These rules are cap-
tured by the two subprotocol state machines at the far
left in Figure 4. The next rule (the third protocol from
the left) describes the occurrence of thesuspend mes-
sage:suspend can arrive in the initial state, is reenabled
by theresume complete message, and is permanently
disabled by theunplug message.

The complete decomposition consists of six subpro-
tocols shown in Figure 4. This decomposition is con-
structed in such a way that each subprotocol describes
the occurrence of a single type of message, shown in bold
italics in the diagram. Any other message is allowed to
occur in any state of the subprotocol, as it is constrained
by a separate subprotocol.

The decomposition has an important property that the
driver satisfies safety constraints of the original protocol
if and only if it does so for each protocol in the decompo-
sition. Formally, this is achieved by ensuring that parallel
product of subprotocol state machines is equivalent to the
original protocol state machine.
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In our experience, even complex driver protocols al-
low decomposition into simple subprotocols with no
more than four states and only a few transitions. Verify-
ing each subprotocol requires a small subset of predicates
involved in checking the monolithic protocol, leading to
exponentially faster verification.

Automatically provide key predicates One way to
speed-up the abstraction-refinement algorithm is to seed
it with a small set of key predicates that allow refuting
large families of counterexamples. Guessing such key
predicatesin general is extremely difficult. In case of
active driver verification, an important class of key pred-
icates can be provided to SATABS automatically.

As illustrated in Figure 3c, when checking a driver
protocol, we introduce a global variable that keeps track
of protocol state. In verifying the protocol, SATABS

eventually discovers predicates over this variable of the
form (state==1), (state==2), . . . , one for each state
of the protocol (e.g., predicatep1 in Figure 3d). These
predicates are important to establishing the correspon-
dence between the driver control flow and the protocol
state machine. We therefore provide these predicates to
SATABS on startup, which accelerates verification sig-
nificantly.

Control-flow transformations We found that it of-
ten takes SATABS many iterations to correlate dependent
program branches. For example, the else-if branch in
line 9 and the if-branch in line 13 in Figure 3c cannot
both be taken in the same run of the driver. SATABS

does not know about this correlation initially, leading to
a spurious counterexample trace that takes both branches
and triggers the assertion in line 19. This counterexam-
ple can be refuted using predicatep2≡ (m== m1). In
practice, however, the driver can contain hundreds lines
of code between the condition in line 13 and the failed
assertion. This leads to a large number of similar spu-
rious counterexample traces. In analysing these traces,
SATABS introduces many predicates that only refute a
subset of these counterexamples before discoveringp2,
which allows refuting all of them.

This problem frequently occurs in active drivers when
the driverAWAITs on multiple mailboxes and then checks
the returned value.

To remedy the problem, we have implemented a novel
control-flow graph transformation that uses static anal-
ysis to identify correlated branches, and merges them.
The analysis identifies, through inspecting the use of the
AWAIT function, where to apply the transformation. Then
infeasible paths through each candidate region are iden-
tified by generating Boolean satisfiability queries which
are discharged to a SAT solver. The CFG region is then
rewritten to eliminate infeasible paths. The effect of the
rewriting on the CFG is shown in Figure 5. Figure 3e

Figure 5: CFG transformation example.

shows the driver after the transformation. This version
of the driver can be verified using only predicatep1.

This technique effectively avoids the expensive search
for additional predicates using much cheaper static pro-
gram analysis. In our experiments, SATABS performs or-
ders of magnitude more effectively over the new program
structure, being able to quickly infer key predicates that
could previously only be inferred after many abstraction
refinement iterations and the inference of many redun-
dant predicates.

4.2 Checking liveness

As SATABS is restricted to analysis of safety properties,
the GOANNA tool comes into play for analysis of liveness
properties. GOANNA is a C and C++ bug finding tool that
supports user-defined rules written in the CTL temporal
logic [9], which allows natural specification of safety and
liveness properties.

Unlike SATABS, GOANNA is intended as a fast
compile-time checker and therefore does not perform
data-flow analysis.

Properties to be checked for each protocol are ex-
tracted from the protocol specification. In particular, we
apply theAWAITrule to every incoming mailbox and the
Timedrule to every timed state of the protocol.

Describing a temporal property using the GOANNA

specification language involves two steps. First, we iden-
tify a set of important program events related to the prop-
erty being verified, such as sending and receiving of mes-
sages. We use syntactic pattern matching to label pro-
gram locations that correspond to these events. Second,
we encode the property to be checked as a temporal logic
formula in a dialect of CTL, defined over events identi-
fied at the previous step. Due to limited space, we omit
the details of this encoding.

4.3 Automation

Verifying active driver protocols requires transforming
protocol state machines into a representation supported
by the verification tools. These transformations include:
protocol decomposition, encoding of safety properties
into C assertions, and encoding of liveness properties
into the GOANNA specification language.

7



?unplug !unplug complete ?suspend !suspend complete ?resume !resume complete

Figure 4: Decomposition of the protocol in Figure 1(b).

These transformations can be automated in a straight-
forward way, but their automation will require significant
additional implementation effort. Because our resources
are limited, in all experiments cited in this paper proto-
col transformations were performed manually, providing
a large proof-of-concept for our approach.

5 Implementation

We implemented the active driver framework along with
several active device drivers in Linux 2.6.38. The frame-
work consists of loadable kernel modules and does not
require any changes to other kernel components.

The generic part of the framework shared by all ac-
tive drivers provides support for scheduling and mes-
sage passing. It implements thecooperative domain
abstraction, which constitutes a collection of coopera-
tively scheduled kernel threads hosting an active driver.
Threads inside the domain communicate with the kernel
via a shared message queue. The framework guarantees
that at most one thread in the domain is runnable at any
time. The thread keeps executing until it blocks in the
AWAIT function. AWAIT checks whether there is a mes-
sage available in one of the mailboxes specified by the
caller and, if so, returns without blocking. Otherwise it
calls the thread dispatcher function, which finds a thread
for which a message has arrived. The dispatcher uses the
kernel scheduler interface to suspend the current thread
and make the new thread runnable. In the future this de-
sign can be optimised by implementing native support
for light-weight threads in the kernel.
EMIT andAWAIT functions do not perform memory al-

location and therefore never fail. This simplifies driver
development, as the driver does not need to implement
error handling logic for each invocation of these ubiqui-
tous operations. On the other hand this means that the
driver is responsible for allocating messages sent to the
OS and deallocating messages received from the OS. By
design of driver protocols, most mailboxes can contain
at most one message, since the sender can only emit a
new message to the mailbox after receiving a completion
notification for the previous request. Such messages can
be pre-allocated statically.

Interrupt handling in active drivers is separated into
top and bottom halves. The driver registers with the
framework a top-half function that is invoked by the ker-
nel in the primary interrupt context (outside the cooper-
ative domain). A typical top-half handler reads the in-
terrupt status register, acknowledges the interrupt in the
device, and sends an IRQ message to the driver. The
actual interrupt handling happens inside the cooperative
domain in the context of the driver thread that receives
the IRQ message. IRQ delivery latency can be min-
imised by queueing interrupt messages at the head of the
message queue; alternatively interrupts can be queued as
normal messages, which avoids interrupt livelock an en-
sures fair scheduling of interrupts with respect to other
driver tasks.

In addition to the generic functionality described
above, the active driver framework defines protocols for
supported classes of drivers and provides wrappers to
perform the translation between the Linux driver inter-
face and message-based active driver protocols. Wrap-
pers enable conventional and active drivers to co-exist
within the kernel.

Active driver protocols are derived from the corre-
sponding Linux interfaces by replacing every interface
function with a message or a pair of request/response
messages. While multiple function calls can occur con-
currently, messages are serialised by the wrapper.

Since Linux lacks a formal or informal specification
of driver interfaces, deriving protocol state machines of-
ten required tedious inspection of the kernel source. On
the positive side, we found that, compared to building an
OS model as a C program, state machines provide a nat-
ural way to capture protocol constraints and are useful
not only for automatic verification, but also as documen-
tation for driver developers.

Table 1 lists protocols we have specified and imple-
mented wrappers for. For each protocol, it gives the num-
ber of protocol states and transitions, and the number of
subprotocols in its decomposition (see Section 4.1). The
PCI protocol provides access to OS services used to man-
age a device on a PCI bus, including configuration, hot
plugging, and power management. Ethernet, SATA, and
SCSI protocols describe services that network and stor-
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protocol #states #transitions #subprotocols

PCI 13 41 11
Ethernet 17 36 6
SCSI 42 67 -
SATA 39 70 22
DAI 8 20 6

Table 1: Implemented active driver protocols.

driver supported
protocols

LOC
(native)

LOC
(active)

RTL8169 1Gb Eth PCI, Ethernet 4,220 4,317
ATA framework SCSI, SATA(client) 9,287 9,718
AHCI SATA PCI, SATA 2,268 2,487
OMAP DAI audio DAI 583 705

Table 2: Active device driver case studies, protocols that
each driver implements, and the size of the native Linux
and active versions of the driver in lines of code (LOC)
measured usingsloccount.

age drivers provide to the OS. Finally, the Digital Audio
Interface (DAI) protocol is part of the Linux ALSA au-
dio framework and must be implemented by drivers for
audio controller devices. We do not give the size of de-
composition of the SCSI protocol as we did not verify
this protocol in our experiments.

Table 2 lists active device drivers we have imple-
mented along with protocols that each driver supports.
All four drivers control common types of devices found
in virtually every computer system. These drivers were
obtained by porting native Linux drivers to the active ar-
chitecture, which allows direct comparison of their per-
formance and verifiability against conventional drivers.

Our first active driver case study is based on the
RTL8169 Gigabit Ethernet controller driver, which is in-
teresting due to its stringent performance requirements.
The second case study is based on two drivers layered
on top of each other in the Linux storage stack: the
ATA framework driver and the AHCI Serial ATA con-
troller driver. This case study demonstrates that active
drivers support the stacked driver architecture found in
most OSs. Our final case study demonstrates that the ac-
tive driver architecture is suitable for the embedded space
using an audio controller driver for the OMAP SoC.

6 Evaluation

6.1 Verification

We applied the verification methodology described in
Section 4 to RTL8169, AHCI, and OMAP DAI drivers.
We did not verify the ATA framework driver due to time
constraints. Verification was performed on machines
with 2GHz quad-core Intel Xeon CPUs.

driver avg(max)
time(minutes)

avg(max)
refinements

avg(max)
predicates

RTL8169 29 (103) 3 (7) 3 (8)
AHCI 123 (335) 2 (6) 2 (19)
OMAP DAI 5 (13) 2 (5) 2 (0)

Table 3: Statistics for checking safety properties using
SATABS.

Verification using SATABS and GOANNA For each of
the three drivers we were able to verify all safety proper-
ties defined by their protocols using SATABS with zero
false positives. Table 3 shows statistics for verifying
safety properties using SATABS. For each driver, it gives
average and maximum time, the number of abstraction
refinement loop iterations and the number of predicates
required for verification to succeed, across all subproto-
cols for each driver. The number of predicates reflects
predicates discovered dynamically by the abstraction re-
finement loop and does not include candidate predicates
with which SATABS is initialised (see Section 4.1).

The small number of predicates involved in checking
these properties indicates that the control skeleton of an
active driver responsible for interaction with the OS has
few data dependencies. This confirms that the active
driver architecture achieves its goal of making the driver-
OS interface amenable to efficient automatic verification.
At the same time, the fact that several refinements are re-
quired in most cases indicates that the power of the ab-
straction refinement method is necessary to avoid false
positives when checking safety.

Despite the small number of predicates required, ver-
ification times are relatively high for our benchmarks.
This is due to the large size of our drivers, and the
fact that SMV, the model checker used by SATABS,
was not designed primarily for model checking boolean
programs. We experimented with the BOOM model
checker [4], which is geared towards boolean program
verification. While in many cases verification using
BOOM was several times faster than with SMV, we did
not use it in our final experiments due to stability issues.

All optimisations described in Section 4.1 proved es-
sential to making verification tractable. Disabling any
one of them led to overly large abstractions that could
not be analysed within reasonable time.

We used GOANNA to verify liveness properties of
drivers as explained in Section 4.2. GOANNA performs a
less precise analysis than SATABS and is therefore much
faster. It verified all drivers in less than 1 minute while
generating 8 false positives.

These results demonstrate that active drivers’ proto-
col compliance can be verified using existing tools. At
the same time they suggest that an optimal combination
of accuracy and verification time requires a trade-off be-
tween full-blown predicate abstraction of SATABS and
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purely syntactic analysis of GOANNA.

Comparison with conventional driver verifica-
tion An important remaining question is: how does
our verification methodology compare against the
conventional approach to driver verification in terms of
its ability to detect real driver bugs? In Section 2 we
showed, using the Linux RTL8169 driver case study,
that the scalability of the traditional verification method-
ology for passive drivers is limited by the complexity of
building an accurate OS model and the state explosion
resulting from concurrency.

We carried out an equivalent case study on the active
version of the RTL8169 driver. To this end, we simulated
the 12 OS protocol violations found in the native Linux
driver in the active driver. To reproduce concurrency-
related errors in the active driver we considered message
sequences that simulate thread interleavings of the con-
ventional driver. We were able to detect each of the 12
protocol violation bugs within 3 minutes per bug.

This result confirms that the active driver architecture
along with the verification methodology presented above
lead to device drivers that are more amenable to auto-
matic verification than passive drivers.

Comparison with SLAM SLAM [2] is a state-of-the-
art driver verification tool used in industry to find bugs
in Windows device drivers. It defines hundreds of safety
rules that capture common driver safety errors. Com-
bined with the Terminator [8] liveness checker, it can
also detect liveness errors.

Analysis of the SLAM rule database shows that most
of the rules are similar to subprotocols obtained after de-
composition of active driver protocols (see e.g. Figure 4).
They describe simple properties such as “event A must
happen after event B and before event C”. With the ex-
ception of rules that are not applicable to active drivers,
such as spinlock usage rules, all of SLAM rules can be
defined as part of active driver protocols.

On the other hand, not every active driver protocol rule
can be defined for conventional drivers. Rules that re-
quire the driver to wait for certain protocol messages in a
state do not have analogues in the SLAM rule database.
This is not a limitation of SLAM, but rather a conceptual
limitation of the passive driver architecture, as discussed
in Section 2. Out of the 45 subprotocols in Table 1, 26
subprotocols encode such rules and thus would not be
amenable to SLAM-based verification.

6.2 Performance

Microbenchmarks The performance of active drivers
depends on the overhead introduced by thread switching
and message passing. We measure this overhead on a
machine with 2 quad-core 1.5GHz Xeon CPUs.
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Figure 6: Message throughput and aggregate CPU utili-
sation over 8 CPUs for varying number of clients.

In the first set of experiments, we measure the com-
munication throughput by sending a stream of messages
from a normal kernel thread to a thread inside a coop-
erative domain. Messages are buffered in the message
queue and delivered in batches when the cooperative do-
main is activated by the scheduler. This setup simu-
lates streaming of network packets through an Ethernet
driver. The achieved throughput is 2· 106 messages/s
(500 ns/message) with both threads running on the same
core and 1.2 ·106 messages/s (800 ns/message) with the
two threads assigned to different cores on the same chip.

Second, we run the same experiment with varying
number of kernel threads distributed across available
CPU cores (without enforcing CPU affinity), with each
Linux thread communicating with the cooperative thread
through a separate mailbox. As shown in Figure 6, we do
not observe any noticeable degradation of the throughput
or CPU utilisation as the number of clients contending to
communicate with the single server thread increases (the
drop between one and two client threads is due to the
higher cost of inter-CPU communication). This shows
that our implementation of message queueing scales well
with the number of clients.

Third, we measure the communication latency be-
tween a Linux thread and an active driver thread running
on the same CPU by bouncing a message between them
in a ping-pong fashion. The average measured roundtrip
latency is 1.8µs. For comparison, the roundtrip latency
of a Gigabit network link is at least 55µs.

Macrobenchmarks We compare the performance of
the active RTL8169 Ethernet controller driver against
equivalent native Linux driver using the Netperf bench-
mark suite on a 2.9GHz quad-core Intel Core i7 machine.
Results of the comparison are shown in Figure 7. In the
first set of experiments we send a stream of UDP packets
from the client to the host machine, measuring achieved
throughput (using Netperf) and CPU utilisation (using
oprofile) for different payload sizes. The client ma-
chine is equipped with a 2GHz AMD Opteron CPU and a
Broadcom NetXtreme BCM5704 NIC. The active driver
achieved the same throughput as the native Linux driver
on all packet sizes, while using 20% more CPU in the
worst case (Figure 7(a)).
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(a) UDP throughput for varying packet sizes
for a single client. The top graph shows
achieved throughput; the bottom graph
shows CPU utilisation.

(b) UDP throughput for multiple clients
(packet size=64 bytes). The top graph
shows aggregate throughput; the bottom
graph shows average CPU utilisation across
8 cores.

(c) UDP latency for varying packet sizes for
a single client. The top graph shows average
round-trip latency; the bottom graph show
CPU utilisation.

Figure 7: Performance of the RTL8169 Ethernet driver measured with Netperf.

In the second set of experiments, we fix payload size to
64 bytes and vary the number of clients generating UDP
traffic to the host between 1 and 8. The clients are dis-
tributed across four 2GHz Intel Celeron machines with
an Intel PRO/1000 MT NIC. The results (Figure 7(b))
show that the active driver sustains up to 10% higher
throughput while using proportionally more CPU. Fur-
ther analysis revealed that the throughput improvement
is due to slightly higher IRQ latency, which allows the
driver to handle more packets per interrupt, leading to
lower packet loss rate.

The third set of experiments measures the round
trip communication latency between the host and a re-
mote client with 2GHz AMD Opteron and NetXtreme
BCM5704 NIC. Figure 7(c) shows that the latency intro-
duced by message passing is completely masked by the
network latency in these experiments.

We evaluate the performance of the AHCI SATA con-
troller driver and the ATA framework driver using the
iozone benchmark suite running on a system with a
2.33GHz Intel Core 2 Duo CPU, Marvell 88SE9123
PCIe 2.0 SATA controller, and WD Caviar SATA-II 7200
RPM hard disk. We run the benchmark with working set
of 500MB on top of the raw disk.

We benchmark both drivers, stacked on top of each
other, against equivalent Linux drivers. Both setups
achieved the same I/O throughput on all tests, while the
active drivers’ CPU utilisation was slightly higher (Fig-
ure 8). This overhead can be reduced through improved
protocol design. Our SATA driver protocol, based on the
equivalent Linux interface requires 10 messages for each
I/O operation. A clean-slate redesign of this protocol
would involve much fewer messages.

We did not benchmark the DAI driver, as it has trivial
performance requirements and uses less than 5% of CPU.

7 Related work

Active drivers Singularity [10] is a research OS writ-
ten in the Sing# programming language. It comprises
a collection of processes communicating over message
channels. Sing# supports a state-machine-based notation
for specifying communication protocols between various
OS components, including device drivers. The Sing#
compiler checks protocol compliance at compile time.
Sing# extends its memory safety guarantees to message-
based communication. For example, the compiler is able
to verify that the program never dereferences a pointer
whose ownership was passed to another process in a mes-
sage. In contrast, our C-based implementation of active
drivers does not assign any special meaning to pointers
passed between the driver and the OS.

RMoX [3] is a process-based OS written in occam-pi.
RMoX processes communicate using synchronous ren-
dezvous. Communication protocols are formalised using
the CSP process algebra and verified using the FDR tool.

The Dingo [19] active driver framework for Linux
aims to simplify driver programming in order to help
driver developers avoid errors. It relies on a C language
extension to provide language-level support for messages
and threads. Dingo uses a Statechart-based language to
specify driver protocols; however it only supports run-
time protocol checking and does not implement any form
of static verification.

The CLARITY [5] programming language is de-
signed to make passive drivers more amenable to au-
tomatic verification. To this end it provides constructs
that allow writing event-based code in a sequential style,
which reduces stack ripping. It simplifies reasoning
about concurrency by encapsulating thread synchronisa-
tions insidecoord objects that expose well-defined se-
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Figure 8: Native vs. active AHCI and ATA framework
driver performance on the iozone benchmark.

quential protocols to the user.

User-level drivers User-level driver frameworks for
microkernel-based [17] OSs encapsulate each device
driver in a separate process that communicates with other
OS processes using some form of message passing. The
driver thread executes an event loop that handles incom-
ing messages by invoking appropriate driver entry points.
Thus, even though the driver has its own thread of con-
trol and uses messages for external communication, in-
ternally it is based on the passive programming model
and suffers from stack ripping.

Verification tools Automatic verification tools for
C [2, 8, 7, 13, 18] is an active area of research, which is
complementary to our work on making drivers amenable
to formal analysis using such tools. Any improvements
to these tools are likely to further improve the speed and
accuracy of active driver verification.

Several verification tools, including SPIN [16], focus
on checking message-based protocols in distributed sys-
tems. These tools work on an abstract model of the sys-
tem that is either written by the user or extracted from
the program source code [15]. Such a model constitutes
a fixed abstraction of the system that cannot be automati-
cally refined if it proves too coarse to verify the property
in question. Our experiments show that abstraction re-
finement is essential to avoiding false positives in active
driver verification; therefore we do not expect these tools
to perform well on active driver verification tasks.

8 Conclusion

We argue that improvements in automatic device driver
verification cannot rely solely on smarter verification
tools and require an improved driver architecture. Previ-
ous proposals for verification-friendly drivers were based
on specialised language and OS support and therefore
were not compatible with existing systems. Based on
ideas from this earlier research, we developed a driver
architecture and verification methodology that support
drivers written in C and can be implemented in any exist-
ing OS. Our experiments confirm that this methodology
enables more thorough verification of the driver-OS in-
terface than what is possible for conventional drivers.

9 Acknowledgements

We would like to thank Michael Tautschnig for his
help in troubleshooting SATABS issues. We thank the
GOANNA team, in particular Mark Bradley and Ansgar
Fehnker, for explaining GOANNA internals and provid-
ing us with numerous ideas and examples of verifying
active driver properties using GOANNA. We thank Toby
Murray for his feedback on a draft of the paper.

NICTA is funded by the Australian Government as
represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence
program.

References

[1] A DYA , A., HOWELL, J., THEIMER, M., BOLOSKY, W., AND

DOUCEUR, J. Cooperative task management without manual
stack management. In2002 USENIX(Monterey, CA, USA, Jun
2002), pp. 289–302.

[2] BALL , T., BOUNIMOVA , E., COOK, B., LEVIN , V., L ICHTEN-
BERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI , S. K.,
AND USTUNER, A. Thorough static analysis of device drivers.
In 1st EuroSys Conf.(Leuven, Belgium, Apr 2006), pp. 73–85.

[3] BARNES, F., AND RITSON, C. Checking process-oriented oper-
ating system behaviour using CSP and refinement.Operat. Syst.
Rev. 43, 4 (Oct 2009), 45–49.

[4] BASLER, G., HAGUE, M., KROENING, D., ONG, C.-H. L.,
WAHL , T., AND ZHAO, H. Boom: Taking boolean program
model checking one step further. InTACAS(2010), vol. 6015
of Lecture Notes in Computer Science, Springer, pp. 145–149.

[5] CHANDRASEKARAN, P., CONWAY, C. L., JOY, J. M.,AND RA-
JAMANI , S. K. Programming asynchronous layers with CLAR-
ITY. In 6th ESEC(Dubrovnik, Croatia, 2007), pp. 65–74.

[6] CHOU, A., YANG, J.-F., CHELF, B., HALLEM , S., AND EN-
GLER, D. An empirical study of operating systems errors. In
18th SOSP(Lake Louise, Alta, Canada, Oct 2001), pp. 73–88.

[7] CLARKE , E. M., KROENING, D., SHARYGINA , N., AND

YORAV, K. Predicate abstraction of ANSI-C programs using
SAT. Formal Methods in System Design 25, 2-3 (2004), 105–
127.

[8] COOK, B., PODELSKI, A., AND RYBALCHENKO , A. Termina-
tion proofs for systems code. In2006 PLDI (Ottawa, Ontario,
Canada, 2006), pp. 415–426.

[9] EDMUND M. CLARKE , ORNA GRUMBERG, D. P.Model Check-
ing. MIT Press, 1999.
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